РУБРИКИ |
Конспект лекций - (лекции) |
РЕКЛАМА |
|
Конспект лекций - (лекции)Конспект лекций - (лекции)Дата добавления: март 2006г. Конспект лекций по биофизике Биофизика –это наука, изучающая физические и физико-химические процессы, протекающие в биосистемах на разных уровнях организации и являются основой физиологических актов. Возникновение биофизики произошло, как прогресс в физике, вклад внесли математика, химия и биология. Живые огранизмы –открытая, саморегулирующаяся, самовоспроизводящаяся и развивающаяся гетерогенная система, важнейшими функциональными веществами в которой являются биополимеры: белки и нуклеиновые кислоты сложного атомно-молекулярного строения. Раскрытие общих закономерностей поведения открытых неравновесных систем. Теоретическое обоснование термодинамических (т/д) основ жизни. ) Научное истолкование явлений индивидуального и эволюционного развития, саморегуляции и самовоспроизведения. Выяснение связей между строением и функциональными свойствами биополиметов и других биологически активных веществ. Создание и теоретическое обоснование физ-хим методов исследования биообъектов. Физическое истолкование обширного комплекса функциональных явлений (генерация и распределение нервного импульса, мышечное сокращение, рецепция, фотосинтез и др. ) Молекулярная – изучает строение и физ-хим свойства, биофизику молекул. Биофизика клетки – изучает особенности строения и функционирования клеточных и тканевых систем. Биофизика сложных систем –изучает кинетику биопроцессов, поведение во времени разнообразных процессов присущих живой материи и термодинамику биосистем. Предмет и практическая значимость т/д биосистем. Подходы: феноменологический и детальный. Значение имеют т/д параметры только в исходном и конечном состоянии. Термодинамика –это наука, изущающая наиболее общие закономерности превращения различных видов энергии в системе. Практическая значимость т/д в биологии. Позволяет оценить энергетические изменения, происходящие в результате биохимических реакций; рассчитать энергию разрыва конкретных хим связей; рассчитать осмотическое давление по обе стороны полупроницаемой мембраны; рассчитать влияние концентрации соли в растворе на растворимость макромолекул. Применяется для описания процессов, протекающих в электрохимических ячейках. Привлекается для обоснования теории возникновения и эволюции жизни на Земле. Понятие т/д систем, виды т/д систем. Система –совокупность взаимодействующих между собой относительно элементарных структур или процессов, объединяющихся в целое выполнением некоторой общей функции, несводимой к функциям ее компонентов. Т/д система – часть пространства с материальным содержимым, ограниченная оболочкой. а) изолированные (не обмениваются с окружающей средой ни веществом, ни энергией), экстенсивные, зависят от количества вещества в системе (масса, объем), интенсивные, не зависят от количества вещества в системе (давление, t0). Количество теплоты, поступающей в систему расходуется на увеличение внутренней энергии системы за вычетом совершенной работы. Работа равна произведению давления на изменившийся объем плюс максимально полезная работа против внешнего давления по изменению объема системы. Живые организмы не являются источников новой энергии. Окисление поступающих в живой организм питательных веществ приводит к высвобождению в нем эквивалетного количества энергии. ........................... –определение питательных веществ, поступающих в организм. Металлический сосуд с теплоизолирующими стенками в который помещаются исследуемые питательные вещества, затем их сжигают с помощью высоковольтных разрядов и измерают теплоту сгорания. Определение расхода энергии в течение суток. Метод прямой или непрямой калориметрии. Прямой: Камера "ледяной калориметр". Теплоизолирующий материал, лед, лабораторное животное (человек). Энергия, высвобождающаяся из организма эквивалентна поступающей в организм Производят сравнение состава и объема вдыхаемого и выдыхаемого воздуха. Используют мешок Дугласа. Для анализа используют газоанализаторы: ГА Холдейна: система стеклянных трубочек, поглощающая CO2 и O2. Сейчас ГА с поглощением световых потоков. Нормальный дыхательный коэффициент 0, 85±0, 03. Нахождение КЭК (калориметрический эквивалент кислорода)–численно равен количеству энергии, высвобождающейся в организме при потреблении 1 л О2. Рисунок ДК = 1, КЭК = 5, 05; 0, 8; 4, 8; 0, 7; 4, 69; 0, 85; 4, 86. В клинических условиях используют неполный газовый анализатор, не считают СО2. Считают объем поглощенного О2с помощью спирографа (аппарат метатест). Диаграмма под наклоном, из замкнутой системы постепенно уходит О2, Х отражает объем поглощенного O2 из системы 1 см? 400 мл. ДК принимается равным здесь 0, 85. 1 л – 4, 86 ккал показывает в каком направлении происходит перемещение энергии в изолированных системах. если в т/д системе происходят процессы, связанные с выделением или поглощением тепла, то эта система при любой t0способна поглотить некоторое дополнительное количество тепла. Величина, характеризующая тепловую емкость системы и является функцией t0 – S. Тепловая емкость системы. Т/д функция состояния системы, являющаяся мерой ее неупорядоченности. лед S = 9. 8, жидкость S = 16. 7, газ S = 45. 1 Мера вероятности системы, имеет статистический характер. Впервые установил Больцман. Т/д вероятность –это количество микросостояний, возможных в пределах данного макросостояния. Все микросостояния, определяющие т/д вероятность имеют одинаковую математическую вероятность. Математическая вероятность– это среднее значение частоты появления события при массовых испытаниях. В изолированных системах необратимые т/д процессы протекают в направлении возрастания энтропии. S полностью обратимых т/д процессов сохраняет постоянное значение. Теплота –это особый вид энергии (низкого качетва) не может переходить без потери в другие виды энергии. Тепловая энергия связана с хаотическим движением молекул, остальные виды энергии базируются на упорядоченном движении молекул. Дриллюэн создал классификацию видов энергии по способности вида энергии превращаться в другие виды энергии. –max эффективная, превращается во все другие виды энергии. Гравитационная, ядерная, световая, электрическая, – тепловая. Деградация высших типов энергии в энергию низших типов – основное эволюционное свойство изолированных систем. Рисунок Характеристические функции состояния системы изменения которых численно равно полезной работе при условии постоянства определенных т/д параметров. dU=dQ-dW F=U-TS – термодинамический потенциал Гельм-Гольци или свободная энергия Гельм-Гольца Рассмотрим второй случай В реальных условиях редко Р постоянно, а V системы изменяется, следовательно величины т/д потенциалов совпадают. Выполенение полезной работы при выполнении необратимого процесса всегда сопровождается рассеянием энергии, величину которой определяет произведением TdS, чем больше эта величина, тем более необратимым является процесс. Для абсолютно обратимых процессов По знаку и величине т/д потенциала можно судить о направленности процесса, если в результате процесса величина т/д потенциалов уменьшается, такой процесс является самопроизвольным, идет с выделением энергии и называется экзергоническим, если т/д потенциалы увеличивается, то процесс идет не самопроизвольный, требует притока энергии извне и называется эндергоническим. При достижении равновесия т/д потенциалы стремятся к минимальному значению. Процессы превращений энергии и совершения работы могут протекать до тех пор пока свободная энергия не станет равна нулю, а энтропия максимальной. Такое состояние носит названия т/д равновесия. Такое состояние в неживой природе является конечным состоянием, в направле6нии которого эволюционируют все т/д системы. КПД –это отношение произведенной работы к изменению свободной энергии, затраченной на эту работу. КПД = W/dFН1 КПД может выражаться в абсолютных единицах или процентах. Согласно второму закону т/д, КПД обратимого процесса должно быть равно 1. КПД необратимых процессов < 1. КПД реальных биологических процессов < 1. Приблизительное значение КПД реальных биологических процессов: Биологические системы характеризуются наличием большого количества градиентов (осмотический, электрический, концентрационный…) Градиент какого-либо т/д параметра изменяется с расстоянием Рисунок Биосистема способна совершать работу, если в ней имеется градиент. Градиент – своеобразное депо энергии. F свободная энергия F = RTlnФ1/Ф2 Совершение работы в системе связано с реализацией этой свободной энергии. Если совершается работа, то градиент, за счет энергии которого это происходит, уменьшается, но параллельно возникает другой градиент противоположной направленности. При необратимых процессах величина второго градиента будет меньше, чем величина первого. Применимость второго закона т/д для характеристики свойств био систем Второй закон т/д был сформулирован для характристики изолированных систем. Реальные биологические системы являются открытыми. Значение энтропии строго определено для равновесного состояния. Био системы в своем развитии проходят через целый ряд неравновесных состояний. Энтропия и другие функции состояния могут быть определены в любой момент изменения неравновесного состояния или энтропии и др функций состояния является непрерывными и однозначными функциями т/д параметров и времени. В открытой системе Энтропия в системе изменяется за счет процессов производства энтропии в самой системе и за счет обмена энтропии между системой и окружающей средой. diS>0 – необратимые процессы Скорость изменения энтропии в системе равна сумме скорости продукции энтропии в самой системе и скорости обмена энтропией между системой и окружающей средой. Скорость продукции энтропии в системе всегда больше 0, так как т/д процессы в ней необратимы. В системе образуется некоторое количество энтропии, но часть энтропии оттекает в окружающую среду, но скорость оттока не велика и энтропия накапливается в системе. Вся энтропия, которая образуется оттекает в окружающую среду. Это состояние наиболее характерно для зрелых био систем. Энтропия в этой системе, но оттекает из системы больше, чем образуется, следовательно общее кол-во энтропии в системе уменьшается. В реальных био системах это встречается на стадии роста, развития и становления ситемы. Такое состояние т/д системы при котором ее параметры со временем не изменяются, но происходит обмен веществом и энергией. Для био систем часто встречается, но в то же время множество систем стремится к состоянию равновесия. Открытые системы могут переходить в состояние т/д равновесия постоянно тратится свободная энергия на поддержание состояния т/д потенциалы постоянны, G и F не равны 0 отсутствует поток вещества и энергии в окружающую среду и обратно на поддержание этого состояния не затрачивается свободная энергия работа способности системы равна 0, т/д потенциалы равны 0 Механизмы устойчивости стационарного состояния в био системах. Теорема Пригожина В любой открытой т/д системе постоянно образуется энтропия, в том числе и в био системе. В стационарных состояниях при фиксированных внешних параметрах локальная продукция энтропии в открытой т/д системе стремится к минимальному значению. Энтропия –мера рассеивания свободной энергии, следовательно любая открытая т/д система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Если в силу причин система отклонилась от стационарного состояния, то вследствие стремления к системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние. Функционируют по принципу обратной связи. Обратная связь –это понятие, обозначающее влияние выходного сигнала системы на ее рабочие параметры. Рисунок. Различают положительную и отрицательную обратную связь. "–" чаще встречается в био системах, направлена на снижение влияния выходного сигнала на рабочие параметры системы. "+" усиливает влияние выходного сигнала на рабочие параметры системы в результате чего система может выходить из данного состояния. "+" секреция желудочного сока. В желудке имеется желудочный сок, который вырабатывается до принятия пищи. Под действием желудочного сока начинается расщепление белков. В начальном отделе кишечника питательные вещества всасываются в кровь. Гормоны (гастрин, гистамин) всасываются в кровь, попадают в сосуды, кровоснабжающие желудок и активизируют его работу. Рисунок. "+" обратная связь имеет место в патогенезе заболевания. "Порочный круг" при инфаркте недостаток кислорода– нарушается питание сердца – гипоксия – нектоз тканей – изменение функций сердца – застой венозной крови – сердечная мышца страдает от недостатка кровоснабжения Рисунок. В реальных био системах + и –обратная связь часто накладываются друг на друга, существуют параллельно. + обратная связь стремится вывести систему из стационарного состояния, при этом она будет переходить в новое стационарное состояние более выгодное при данных условиях. При этом оба стационарных состояния находятся в пределах физиологической нормы отклонений. Каждая система состоящая из элементов будет характеризоваться динамикой, складывающейся из элементов. Кинетика биопроцессов– раздел биофизики, изучающий динамические свойства биопроцессов. Параметры, меняющие свое значение со временем. Переменные величины: численность клеток, биомасса, концентрация отдельных веществ, трансмембранный потенциал. Изначально предполагается, что из изменение в каждый данный момент времени могут быть описаны соответствующими диф уравнениями. Величины, значение которых с течением времени практически не изменяется. Это рН, t0, электропроводность ткани и т. д. Условия: имеется замкнутая популяция клеток, в которой происходят процессы их размножения и гибели. Питательные вещества присутствуют в избытке. Вопрос: Как меняется численность клеток со временем? Может ли в ней установиться стационарное состояние, когда число клеток со временем меняться не будет? Решается с помощью диф уравнения. k – коэффициент пропорциональности, определяется условиями. k1, k2: t0, кол-во пищи, концентрация солей, радиация). k = k1 – k2 dN = kN*dt N0 – количество клеток в начальный момент наблюдения t = 0, е – основание натурального логарифма, Как изменится количество клеток в системе, если ограничить количество питательных веществ? В этом случае изменение количества клеток в популяции со временем будет описываться логистическим уравненем Ферхюста: Nmax – максимально возможная численность популяции в данных условиях. Рисунок. Логистическая кривая. Вторая часть – изгиб в другую сторону N > Nmaxколичество питательных веществ ограничивает дальнейший рост количества клеток в популяции. В биокинетике в качестве переменных величин выступают не только концентрации веществ, но и другие параметры. Биосистема пространственно гетерогенна, следовательно условия действия реагентов могут различаться в разных точках системы и переменные изменяются не только во времени, но и в пространстве. Существуют специфические механизмы саморегуляции действия по принципу обратной связи. Трудности биокинетики связаны так же с тем, что она описывает процессы открытых систем. ИУ – измерительное устройство (измерение параметров регулируемой величины) АС – аппарат сравнения, . Модель системы в которой происходит обмен веществ "а" и "b" с окружающей средой, внутри обратимые реакции превращения "а" в "b", во внешних резервуарах концентрация этих веществ постоянна и равна соответственно А и В. da/dt = k1(A–a)–k2(a–k–2b) Для стационарного состояния будет соблюдаться условие: da/dt = 0, db/dt = 0. "а" стационарное и "b" стационарное не зависят от начальных условий, то есть от значений "а" и "b" в момент t = 0. "а" стационарное и "b" стационарное определяются только величинами констант k с 1 по 3 и концентраций веществ во внешних резервуарах системы, то есть А и В. В каком бы начальном состоянии ни находилась система, в ней в конце концов установится один и тот же стационарный режим при котором а = а стационарное, b = b стационарное. Это свойство эквивалентности стационарных состояний. Оно присуще открытым системам и постоянно встречается при изучении свойств биополимеров. Основная идея метода заключается в отказе от нахождения точных аналитических решений диф уравнений. Вместо этого используются качественные характеристики динамического поведения системы: устойчивость или неустойчивость стационарного состояния, переходы между стационарными состояниями, наличие колебательных движений в системе, качественная зависимость поведения системы от критических значений параметров. Наиболее важным свойством стационарного состояния является егоустойчивость, она определяется спосбностью системы самопроизвольно в него возвращаться после внесения внешних возмущений, отклоняющих систему от исходно стационарной точки. Очевидно, чтобы сделать заключение об устойчивость стационарного состояния необходимо иметь соответствующие критерии. Бассейн с водой открытая система. С определенной Vпр в него поступает вещество а, но оно с определенной Vот из системы истекает. Vпр постоянна, Vпр = V0= cosnt. Чтобы выяснить с какой скоростью меняется количество вещества в системе, нужно вычислить: da/dt = Vпр – Vот = V0 – ka, k – const Vот. Рисунок. Стационарное состояние в т. а отвечает условию, что V = cosnt = 0. В стационарной точке da/dt = 0. Количество вещества в системе постоянно. Качетвенный анализ дается графическим методом. Случайные отклонения а будут компенсироваться системой. Стационарное состояние а устойчиво. Качественный критерий устойчивости стационарного состояния Ляпунова Если система находится в состоянии равновесия, то точка, изображающая местоположение исследуемого показателя на графике будет името постоянное значение координат. Такая точка получила название особой точки. Она показывает местоположение на графике стационарной системы. Если система по каким то причинам выходит из состояния равновесия, то изображающая точка сместится из особой точки и начнет двигаться по плоскости в соответствии с изменением координат х и у. В этой ситуации: dx/dt = p; p = f (x; y); dy/dt = q; q = f (x; y). p и q –непрерывные функции, определенные в данной области плоскости. В соответствии с критерием Липунова состояние равновесия устойчиво, если для любой области допустимых отклонений от состояния равновесия (e) можно указать область d, окружающую состояние равновесия и обладающую тем свойством, что ни одно движение преображающей точки, начинающееся в пределах областиd никогда не достигнет границ области e. При этих условиях стационарное состояние устойчиво. Если же для какой то области e не существует области d, то равновесие не устойчиво. Во многих системах существует не одно, а несколько стационарных состояний, свойства их чаще всего различаются. И это в первую очередь касается их устойчивости, поэтому в данных ситуациях задачей качественного анализа является определение устойчивости всех стационарных состояний и условий перехода между ними. Желательно отразить в системе уравнений все ее наиболее значимые свойства. Но вместе с тем системы диф уравнений из большого их числа, являются перегруженными. Такая модель чересчур детализирована, следовательно наиболее оптимальными моделями, характеризующими основные свойства систем являются модели, состоящие из небольшого числа диф уравнений (предположительно из двух). Принцип узкого места (ПУМ) основан на разделении всех переменных, характеризующих свойства системы на быстрые и медленные. Характерное время процесса– t отражает время развития процесса. t процессов ферментативного катализа 10–1 – 10–6 с, процессы физиологической адаптации, для них t несколько минут и больше, процессы репродукции в этой же системе, для них t несколько минут и больше. t – величина противоположная скорости. V=1/t. В пределах одной отдельной цепочки взаимосвязанных реакций всегда имеются наиболее медленные и наиболее быстрые стадии. Согласно ПУМ общая скорость всей цепи реакций определяется наиболее медленной стадией (она и есть узкое место), она имеет самое большоеt, Vmin. Общее время всей цепи реакций (всего процесса) будет мало отличаться от характерного времени узкого места. Чтобы воздействовать на время процесса нужно воздействовать на узкое место. При внешних возмущениях в системе наблюдаются изменения как быстрых, так и медленных перменных, однако эти изменения протекают с разной скоростью. В устойчивой системе быстрые переменные быстро отклоняются от своих начальных значений, но быстро в них возвращаются. Медленные переменные изменяются в ходе длительных переходных процессов, определяющих динамику всей системы. Фактически быстрые переменные колеблются возле своих стационарных значений. Поэтому вместо диф уравнения, описывающего динамику быстрой переменной можно записать алгебраическое уравнение, отражающее ее стационарное значение, что приведет к постоянному уменьшению числа диф уравнений в системе, останутся лишь те, что описывают наиболее медленные процессы. A>>1 Ю A*F >> 1 Ю x быстрая переменная (dx/dt быстрая величина, скорость D х велика) делить на А Следовательно у является управляющим параметром, влияющим на координаты в стационарной точке. В био системах роль узкого места могут выполнять разные звенья цепи в зависимости от условий. В данном процессе меняется управляющая стадия в зависимости от освещения. При плохом освещении узким место ф\с-а являются начальные фотохимические стадии поглощения и трансформации энергии и света в пигментном аппарате. Скорость этих процессов не зависит от t0 в промежутке от +5 до +300С. При хорошем освещении узким местом ф\с-а являются темновые процессы переноса электрона и поглощения воды. Эти процессы не справляются с потоком электронов, поступающих от пигментного комплекса, что приводит к насыщению ф\с-а (световое насыщение), эти процессы являются ферментативными, поэтому их скорость зависит от t0. И скорость ф\с-а будет увеличиваться с ростом t0. Система двух диф уравнений, модель хар-ся отсутствием перегруженности, на их основании можно качественно провести анализ. Фазовая плоскость –это плоскость с осями координат, на которых отложено значение переменных (х; у), отражающих состояние системы, таким образом каждая точка этой плоскости будет соответствовать определенному состоянию системы Траектория из последовательности точек, каждая из которых будет характеризовать состояние системы в любой определенный момент времени. Последоват. сов-ть точек на фазовой плоскости, отражающая значение переменных (х; у) на пути перехода– это линия, получившая название фаз? ?? Изображающая точка –точка на фазовой плоскости, отражает состояние системы в определенный момент времени. Фазовый портрет–совокупность фазовых траекторий, отражающих качественные черты поведения системы во времени. Для нахождения особой (стационарной) точки, необходимо построить на фазовой плоскости кривые P(x; y)=0; Q(x; y)=0. Очевидно, особая точка будет находиться в месте пересечения этих кривых. Графики могут пересекаться в нескольких точках (если это кривые), следовательно существует несколько стационарных состояний. Важной задачей является определение устойчивости особых точек. Производится по виду правых частей исходной системы уравнений. Об устойчивости стационарного состояния системы судят по поведению системы в случае небольшого отклонения от стационарной точки. Для определения характера устойчивости необходимо одновременно учитывать поведение во времени отклоненийe и h. Существуют специальные уравнений, описывающие e и h. e(t)=C11el1t+C12el2t Особый смысл имеют l1 и l2 – это экспоненциальные показатели l1, 2 = a, b, c, d – значения частных производных в точке (хстац; устац). От вида l1, 2 зависит поведение отклонений e и h соответствующих поведению х и у в особой точке (окресностях). l1, 2это либо действительные числа, либо комплексно-сопряженные (если под знаком корня дробь). l1 и l2 < 0 то есть они являются действительными отрицательными числами, значение e и hбудут со временем снижаться, то есть отклонение системы от особых точек со временем будет . В этом случае стационарное состояние является устойчивым, а особая точка называется устойчивый узел, такой точке соотвествует особый тип фазового портрета. Рисунок. Система будет возвращаться по какой-то траектории в стационарное состояние. l1 и l2 > 0, действительные положительные числа e и hбудут увеличиваться со временем, следовательно первоначальное состояние было неустойчиво и система все дальше будет отклоняться от состояния равновесия. Неустойчивый узел. Фазовый портрет такой же, но стрелки на периферию. l1 и l2 действительные числа разных знаков. Рисунок. Тогда на фазовом портрете системы будет существовать особая точка типа "седла". Сопаратиссы. Из любого начального положения на фазовой плоскости кроме особой точки сепаратисс система будет удаляться из стационарного состояния. Еслиl1 и l2 комплексно-сопряженные числа, то изменения во времени e и h носят колебательный характер. Частные случаи: Действительные l1 и l2 < 0, Рисунок. Re Рисунок. Cтрелки на фазовом портрете направлены наружу, неустойчивый фокус Рисунок. В этом случае l1 и l2превращаеются в мнимые числа, фазовые траектории будут представлять собой эллипсы, не проходящие через начало координат. В начале координат находится неустойчивая точка (центр). Необольшие возмущения в системе переводят ее с одной траектории на другую, то есть изменяется амплитуда колебания. Первые пять типов состояния равновесия являются грубыми, так как их характер не изменяется существенно при небольших изменениях правых частей исходного уравнения, а так же из проиводных первого порядка. Эти типы устойчивости характерны для био систем, так как они должны определенным запасом грубости. Такой запас позволяет им сохранить основные динамические свойства при умеренных внешних воздействиях. Любая триггерная система способна переключаться с одного режима на другой. Ф. п. стриггер системы характризуются как минимум двумя стационарными точками (А и С) 1) силовое переключение осуществляется при значительном изменении переменных х или у. связан с наличием управляющего параметра. Он оказывает влияние на величину обеих переменных х и у. После этого можно восстановить значение управляющего парметра, что приведет к восстановлению исходного вида фазового портрета, однако система при этом остается в устойчивой точке С. характерная черта био систем. Частые колебания промежуточных продуктов био-хим реакций, численности видов, потенциала мембраны и т. д. В любом организме существует набор био-хим процессов, в их основе лежат внутренние свойства системы. Причины колебаний во внутренних динамических свойствах системы. Автоколебательные процессы. Тип фазового портрета –устойчивый предельный цикл. Замкнутая траектория, не проходящая через начало координат. С наружной и внутренней стороны подходят спиральные траектории. Система работает в устойчивом колебательном режиме. Если система в силу внешних воздействий выйдет из такого режима, то в силу своих свойств она вернется на замкнутую траекторию. Возвращение будет осуществляться по спиральной траектории. Переход движения вдоль траектории предельного цикла в автоколебательной системе не зависит от начальных условий. В био кинетике предполагается изменение переменных не только во времени но и в пространстве, в биохимии важнее изменения во времени. В отличие от точечные, такие модели, которые учитывают измениения переменных во времени и в пространстве, называются распределенными. Таким образом, в распределенных системах будут 2 параллельных процесса–хим превращения в отдельных точках пространства и процесс диффузии веществ из области высокой в область низкой концентрации. То есть происходит перенос вещества между соседними элементарными отсеками. В реальных био системах часто существует пространственное распределение источников энергии. Эти системы называются активные распределенные системы. Состояние системы уравнений, отражающих хим реакцию и диффузию реагента. Max простой пример распределенной системы–система, в которой имеется одна переменная Х, одновременно участвующая в хим процессе и диффунцирующая вдоль узкой трубки. r– учитывается размер трубки. Диффузионный поток вещества –масса вещества, проходящего через единицу площади перпендикулярной к направлению диффузии (ось х), пропорционален градиенту вещества, взятому с обратным знаком. D – коэффициент диффузии, t – время, C –концентрация, изменение концентрации во времени за счет диффузии в элементарном объеме трубки, заключенном между точками r и r+Dr, зависит от разности потоков в точках r и r+Dr. Если D const, то изменение С во времени (скорость изменения С) = dc/dt=D*d2c(r, t)/dr2, уравнение диффузии, оно описывает скорость изменения С в системе, в которой происходит только диффузия вещества. Но по условию, в распределенной системе параллельно происходит и хим превращение вещества. Величиной, отражающей хим превращение в системе, является величина точечных членов, которая обозначается, как функция концентрации. выражение отражает химическое превращение и изменение концентрации. В этой системе изменения происходят только по оси Х. В системах, в которых происходят колебательные процессы невозможно отразить их поведение с помощью одного уравнения, поэтому в данном случае используются базовые модели с двумя переменными: Такая базовая модель позволяет качественно описать процессы самопроизвольного возникновения волн и структур в распределенных системах. В общем, они называютсясамоорганизацией, она возникает, когда в системе появляется неустойчивость, приводящая к потере исходного распределения веществ во времени и пространстве. Вместо этого устанавливается новое распределение вещство во времени и пространстве. Характер самоорганизации зависит от функции f (P, Q) (точечных членов) и D, в частности существуют следующие виды самоорганизации: Распределение возмущения в виде бегущего импульса (нервный импульс). Стоячие волны. Синхронные автоколебания разных элементов во всем пространстве системы. Стационарные неоднородные распределения переменных в пространстве (диссипативные структуры). Генерация волн автономными источниками импульсной активности (локальные кратковременные флуктуации переменных). Общим условием возникновения процессов самоорганизации всегда является появление неустойчивости в исходной распределенной системе. Изучает строение и физ хим свойства биофункциональных молекул (прежде всего биополимеров). Основной задачей мол биофизики является вскрытие физических механизмов, ответственных за био функциональность этих молекул (напимер, ферментативная активность белков). Методы: ЭПР, ЯМР, рентгеноструктурный анализ, биохимические технологии. Стремится выяснить основные детали структуры и функции молекул. Основное свойсто–хиральность биомолекул. Большинство молекул, содержащих больше 3х атомов, не имеют ни центра, ни плоскости симметрии. Их можно назвать диссиметричные, или хиральные. В био молекулах связи С могут быть заняты, как одинаковыми, так и разными группами. Из 20 а-к хиральность свойственна 19, ей не обладает глицин. В процессе хим синтеза из исходных симметричных молекул хиральное вещество образуется всегда в виде рацимической смеси, которое содержит по 50% молекул D, L– форм хирального вещества. Состояние с максимальной энтропией. В живой природе имеется фиксация в био структурах какой-либо одной формы хиральных веществ (например в ДНК и РНК всегда D-форма углеводов). С позиции биофизики это объясняется фиксацией информации, то есть выбор одного антипода равнозначен информации в 1 бит. L-аспарагиновая кислота не имеет вкуса, D-аспарагиновая кислота сладкая. Существуют некоторые яды, вызывающие токсический эффект в одной форме и безвредные в другой. Это свойство открыто в 1848 г. Л. Пастером. Основой структуры биологических молекул являются сильные связи –химические ковалентные связи. Биомолекулы отличаются высоким содержанием С, между С–С сильная связь, энергия разрыва равна 328, 9 кДж/моль. Сильные связи присутствуют там, где содержатся мономерные звенья. Сильные связи образуются внешними электронами атомов, поэтому для исследования их особенностей используется раздел Квантовая Химия. Но есть важный недостаток сильной связи, они создают жесткий каркас. Слабые связи основаны на действии невалентных слабых сил, и на их базе формируются биомолекулы. Различаются взаимодействия белковых молекул с другими видами молекул. На базе слабых связей осуществляется тонкая регуляция химических взаимодействий, компартментализация, градиент. Слабые связи характеризуются преобладанием сил притяжения на больших расстояниях и преобладанием сил отталкивания на близких расстояниях. Рисунок 1 График зависимости потенциальной энергии слабого взаимодействия от расстояния между двумя взаимодействующими частицами молекулярной природы. R0 – минимальный потенциал энергии взаимодействия. В точке, соответствующей R0 силы притяжения равны силам отталкивания. Если расстояние меньше R0 , то преобладают силы отталкивания. Если расстояние больше R0, то преобладают силы притяжения. R0оптимальное расстояние, на котором и будут находиться взаимодействующие частицы. Вторичная структура биомолекул зависит от различных видов слабых связей. Ионное взаимодействие. взаимодействие между двумя ионами с зарядами l1 и l2 . Потенциальная энергия в данном случае находится по формуле: Uион=(l1 + l2)/e*R, Величина Uион зависит от зарядов ионов. Если заряды противоположны, то Uион Энтропия этого взаимодействия определяется зарядом иона, дипольным моментом взаимодействующей с ним атомной группы, а так же расстоянием между ними. P = e*l > U = e*P/е*R взаимодействие между двумя диполями или группой диполей, присутствующих в некоем участке пространства Рисунок б) группа диполей не может выстроиться в антипараллельное положение, будет наблюдаться некоторое усреднение взаимодействия между ними. Uсред=2P12P22/3kTR6, постоянные дипольные молекулы или атомные группы (Р1) индуцируют в другой молекуле или атоме дипольный момент (Р2), с которым он и взаимодейтвует. Способность индуцировать диполи в других молекулах определяется напряденностью электромагритного поля первого диполя. Р2 дипольный момент будет зависеть от Е1 напряженности поля. Р2 = а*Е1, а – поляризуемость. Поляризуемость –это способность электронной оболочки смещаться под действием электронного поля. а = 10–24 см3 (размер самой электронной оболочки) Если в среде существует первый диполь, наводящие другие, то он вряд ли будет единственым, следовательно индукционные взаимодействия в значительной мере усредняются и компенсируются друг другом. взаимодействия валентно насыщенных электронных оболочек атомов и молекул. Существует между молекулами газов (N2, CO2, O2). И именно дисперсионными взаимодействиями объясняется непредельность поведения этих газов. Дисперсионные взаимодействия лежат в основе структуры молекул кристаллов. Любой электрон является своеобразным гармоническим осциллятором (когда электрон движется по своей орбите, он является источником волн). Если электрон не взаимодействует с другими электронами, то длину его волны можно рассчитать W0 –исходная частота осцилляции. Во время дисперсионных взаимодействий происходит взаимодействие между двумя такими осцилляторами, при этом длина волны первоначального колебания начинает изменяться, то есть возникает как бы два различных колебания с частотами, отличающимися от первоначальной тем, чем больше взаимодействие. В основе дисперсионного взаимодействия лежат не электростатические, а квантовомеханические силы. Это доказал Лондон. Ориентационное, индукционное и дисперсионное взаимодействие называется ВанДер-Ваальсовым взаимодействием. ВанДер-Ваальсовы силы ответственны за образование конденсированной жидкости, а так же они описывают взаимодействие на разделе фаз (твердый и жидкий). специфическая связь, которая создается атомом Н, который находится в группах ОН, NH, FH, ClH и иногда SH, причем Н связывает эти группы с валентно насыщенными атомами N2, O2 и F. Водородные связи определяют структуру и свойства воды, как самого главного и основного расворителя в биосистемах. Водородные связи участвуют в формировании макромолекул, биополимеров, а так же связях с малыми молекулами. Uвод = 4-29 кДж/моль Основной вклад в водородные связи вносят электростатические взаимодействия, но они не сводятся к ним. Протон движется вдоль прямой, соединяющей экектоотрицательные атомы и испытывает различное влияние со стороны этих атомов. Этот график – частный случай, связь между N-H.... N и N.... H-N. R –расстояние между взаимодействующими частицами. 2 минимума свободной энергии располагаются возле первого или второго взаимодействующего атома N. базируются на силах специфического отталкивания между неполярными атомными группами и молекулами воды. Гидрофобные взаимодействия определяют свойства воды, как конденсированной жидкости. Эти взаимодействия объясняются энтропийным эффектом (реализуется наиболее верояное состояние). Гидрофобное взаимодействие определяет структуру белковых молекул, а также многих надмолекулярных систем. Вода является средой с большим количеством водородных связей, именно они определяют особые свойства воды: ее способность сохранять жидкое состояние в широком диапазоне t0, низкую t0 образования льда. Для льда характерно строго упорядоченное расположение молекул воды, под тетраэдрическими углами. Каждая молекула имеет 4 водородных связи между соседними молекулами. Это рыхлая структура. Когда из льда образуется вода, то эта структура разрушается, в жидкой воде встречаются молекулы с 4, 3, 2, 1 и 0 водородными связями. Водородные связи в жидкой воде характеризуются широким набором углов и длин. Потенциальная энергия. U вод. связ. жидк. воды –непрерывная функция угла межмолекулярной водородной связи и геометрических характеристик молекулы воды. Разработана Айзенбергом и Кауцманом. Особое внимание обращается на масштаб времени наблюдения за структурой. Удалось обнаружить 3 структуры воды: если сделать снимок с длительностью экспозиции намного меньше, чем период колебаний молекул воды (t если продолжить t>>tкол. , но намного меньше времени вращения тел диффузии t=10–5с, то удается пронаблюдать К-структуру. Она характеризуется упорядоченным расположением молекул воды, но случайностью ориентации. при t>>периода вращения диффузии получается Д-структура. Она характеризуется регулярным расположением молекул воды и их правильной, закономерной ориентацией. Жидкая вода состоит из отдельных молекул и структурно связанных кластеров. Кластеры постоянно распадаются и возникают вновь. Это создает усредненное окружение для каждой отдельно взятой молекулы воды, - слабо учитывает молекулы воды в молекулярных группах. рассматривает структурные изменения воды при различных температурах. Предположим, что во время таяния льда, оторвавшаяся молекула воды заполняет пустоты кристаллической решетки, при этом увеличивается удельный вес. Максимальный удельный вес воды наблюдается при +40С, при более высокой t0происходит увеличение амплитуды колебаний молекул воды, увеличение занимаемого ею объема и снижению плотности. Страницы: 1, 2 |
|
© 2007 |
|