![]() |
РУБРИКИ |
Значение витаминов - (реферат) |
РЕКЛАМА |
|
Значение витаминов - (реферат)Значение витаминов - (реферат)Дата добавления: март 2006г. ЗНАЧЕНИЕ ВИТАМИНОВ. Витамины, группа незаменимых для организма человека и животных ор ганических соединений, обладающих очень высокой биологической актив ностью, присутствующих в в ничтожных количествах в продуктах питания, но имеющих огромное значение для нормального обмена веществ и жизнедея тельности. Основное их количество поступает в организм с пищей, и только некоторые синтезируются в кишечнике обитающими в нём полезными микро организмами, однако и в этом случае их бывает не всегда достаточно. Сов ременная научная информация свидетельствует об исключительно многооб разном участии витаминов в процессе обеспечения жизнедеятельности че ловеческого организма. Одни из них являются обязательными компонентами ферментных систем и гормонов, регулирующих многочисленные этапы обмена веществ в организме, другие являются исходным материалом для синтеза тканевых гормонов. Витамины в большой степени обеспечивают нормальное функционирование нервной системы, мышц и других органов и многих физио логических систем. От уровня витаминной обеспеченности питания зависит уровень умственной и физической работоспособности, выносливости и ус тойчивости организма к влиянию неблагоприятных факторов внешней среды, включая инфекции и действия токсинов. В пищевых продуктах могут содер жатся не только сами витамины, но и вещества-предшественники - провита мины, которые только после ряда превращений в организме становятся ви таминами. Нарушения нормального течения жизненно важных процессов в ор ганизме из-за длительного отсутствия в рационе того или иного витамина приводят к возникновению тяжёлых заболеваний, известных под общим наз ванием авитаминозы. В настоящие время такие ситуации практически не встречаются. В редких случаях авитаминозы возможны в следствии заболе ваний, результатом которых является прекращение всасывание витамина или его усиленное разрушение в желудочно-кишечном тракте. Для авитаминозов характерна выраженная клиническая картина со строго специфическими признаками. Достаточно распространённым явлением остаётся частичная ви таминная недостаточность в той или иной степени выраженности-гиповитам инозы. Они протекают более легко, их проявления нечётки, менее выраже ны, к тому же существуют и скрытые формы такого состояния, когда ухудша ется самочувствие и снижается работоспособность без каких либо харак терных симптомов. Распространённость явно выраженных гиповитаминозных состояний и их скрытых форм обусловлена многими причинами, но чаще все го-ориентацией индивидуального питания исключительно на удовлетворение вкусовых запросов без учёта конкретной значимости витаминов для здо ровья, потребностей в них организма и содержания их в продуктах пита ния, не говоря уже о последствии использования тех или иных приёмов кулинарной обработки, способных разрушать витамины. Следует также учиты вать, что гиповитаминозные состояния могут возникнуть при длительном или неправильном приёме антибиотиков, сульфаниламидов и других меди цинских средств, которые подавляют деятельность полезной микрофлоры ки шечника, синтезирующей существенные количества некоторых витаминов, либо непосредственно связывающих и разрушающих витамины. Причиной гиповита минозов может быть и повышенная потребность в витаминах при усиленной физической и умственной работе, при воздействии на организм неблагопри ятных факторов. Таковыми могут быть переохлаждения, перегревания, стрес совые ситуации и т. п. Аналогично их причиной могут быть и физиологичес кие состояния, предъявляющие к организму повышенные требования, напри мер, беременность и кормление ребёнка. Приём витаминов следует проводить в строгом соответствии с рекомендациями или под контролем медицинских работников. Избыточное потребление пищевых продуктов, чрезвычайно бога тых витаминами, или самостоятельный излишний приём витаминных препара тов могут привести к гипервитаминозам. К настоящему времени известно и изучено около 30 витаминов. К обеспечению здоровья человека причастны около 20 из них. Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в опре деленных колличествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Это мнение прочно укоре нилось в науке и поддерживалось такими авторитетными физиологами того времени, как Петтенкофер, Фойт и Рубнер. Однако практика далеко не всегда подтверждала правильность укоре нившихся представлений о биологической полноценности пищи. Практический опыт врачей и клинические наблюдения издавна с не сомненностью указывали на существование ряда специфических заболева ний, непосредственно связанных с дефектами питания, хотя последнее пол ностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешест вий. Настоя щим бичом для мореплавателей долгое время была цинга; от нее погибало моря ков больше, чем, например, в сражениях или от кораблекруше ний. Так, из 160 уча стников известной экспедиции Васко де Гама прокла дывавшей морской путь в Индию, 100 человек погибли от цинги. История морских и сухопутных путешествий давала также ряд поучи тельных примеров, указывавших на то, что возникновение цинги можетбыть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное колличество лимонного сока или отвара хвои. Таким образом, практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пищя сама по себе еще далеко не всегда гарантирует от подоб ных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержаться не во всякой пище. Эксперементальное обоснование и научно-теоретическое обобщение этого многовекового практического опыта впервые стали возможны благо даря открывшем новую главу в науке исследованием русского ученого Ни колая Ивановича Лунина, изучавшего в лаборатории Г. А. Бунге роль мине ральных веществ в питании. Н. И. Лунин проводил свои опыты на мышах, содержавшихся на искусс твенно приготовленной пище. Эта пища состояла из смеси очищенного казе ина(белок молока), жира молока, молочного сахара, солей, входящих в состав молока и воды. Казалось, налицо были все необходимые составные части мо лока; между тем мыши, находившееся на такой диете, не росли, теряли в ве се, переставали поедать даваемый им корми, наконец, погибали. В то же вре мя контрольная партия мышей, получившая натуральное молоко, развивалась совершенно нормально. На основании этих работ Н. И. Лунин в 1880 г. при шел к следущему заключению: ".... если, как вышеупомянутые опыты учат, не возможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке, помимо казеина, жира, молочного сахара и со лей, содержатся еще другие вещества, незаменимые для питания. Представля ет большой интерес исследовать эти вещества и изучить их значение для питания". Это было важное научное открытие, опровергавшее установившееся по ложения в науке о питании. Результаты работ Н. И. Лунина стали оспари ваться; их пытались объяснить, например, тем, что исскуственно приготов ленная пища, которой он в своих опытах кормил животных, была якобы нев кусной. В 1890г. К. А. Сосин повторил опыты Н. И. Лунина с иным вариантом исскусственной диеты и полностью подтвердил выводы Н. И. Лунина. Все же и после этого безупречный вывод не сразу получил всеобщее признание. Блестящим подтверждением правильности вывода Н. И. Лунина установ лением причины болезни бери-бери, которая была особенно широко расп ростронена в Японии и Индонезии среди населения, питавшегося главным образом полированным рисом. Врач Эйкман, работавший в тюремном госпитале на острове Ява, в 1896 году подметил, что куры, содержавшиеся во дворе госпиталя и питавшиеся обычным полированным рисом, страдали заболеванием, напоминающим бери-бе ри. После перевода кур на питание неочищенным рисом болезнь проходила. Наблюдения Эйкмана, проведенные на большом числе заключенных в тюрьмах Явы, также показали, что среди людей, питавшихся очищенным ри сом, бери-бери заболевал в среднем один человек из 40, тогда как в груп пе людей, питавшихся неочищенным рисом, ею заболевал лишь один человек из 10000. Таким образом, стало ясно, что в оболочке риса (рисовых отрубях) содержиться какоето-то неизвестное вещество предохраняющее от заболе вания бери-бери. В 1911 году польский ученый Казимир Функ выделил это вещество в кристалическом виде(оказавшееся, как потом выяснилось, смесью витаминов); оно было довольно устойчивым по отношению к кислотам и вы держивало, например, кипячение с 20%-ным раствором серной кислоты. В ще лочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бе ри-бери является только одной из болезней, вызываемых отсутствием ка ких-то особых веществ в пище. Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н. И. Лунин, в малых количествах, они являются жизненно не обходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами ами нов, Функ(1912)предложил назвать весь этот класс веществ витамина ми(лат. vta-жизнь, vitamin-амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не мение тер мин "витамины" настолько прочно вошел в обиход, что менять его не имело уже смысла. После выделения из пищевых продуктов вещества, предохраняющего от заболевания бери-бери, был открыт ряд других витаминов. Большое значение в развитии учения о витаминах имели работы Гопкинса, Степпа, Мак Коллума, Мелэнби и многих других учёных. В настоящее время известно около 20 различных витаминов. Установ лена и их химическая структура; это дало возможность организовать про мышленное производство витаминов не только путём переработки продук тов, в которых они содержаться в готовом виде, но и искусственно, путём их химического синтеза. В настоящее время витамины можно охарактеризовать как низкомоле кулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах по сравнению с основными её компонентами. ВИТАМИНЫ- необходимый элемент пищи для человека и ряда живых ор ганизмов потому, что они не ситезируются или некоторые из них синтези руются в недостаточном количестве данным организмом. Витамины- это ве щества, обеспечивающее нормальное течение биохимических и физиологичес ких процессов в организме. Они могут быть отнесены к группе биологичес ки активных соединений, оказывающих своё действие на обмен веществ в ничтожных концетрациях. Каждая из этих групп содержит большое колличество различных витаминов, которые обычно обозначают буквами латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне отвечает исторической последовательности открытия витаминов. В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина - его способность предотвращать развития того или иного заболевания. Обычно названию за болевания предшествует приставка " анти ", указывающая на то, что данный витамин предупреждает или устраняет это заболевание. Фолиевая кислота( антианемический витамин, витамин роста для цып лят и бактерий). Все вышеперечисленные-растворимые в воде-витамины, за исклдючением ино зита и витаминов С и Р, содержат азот в своей молекуле, и их часто оъединяют в один комплекс витаминов группы В. Выяснению структуры витамина В2 помогло наблюдение, что все актив но действущие на рост препараты обладали жёлтой окраской и желто-зе лёной флоуресценцией. Выяснилось, что между интенсивностью указанной окраски и стимулирущим препарата на рост в определённых условиях име ется параллелизм. Вещество желто-зеленной флоуресценцией, растворимое в воде, оказа лось весьма распространенным в природе; оно относится к группе естест венных пигментов, известных под названием флавинов. К ним принадлежит например флавин молока (лактофлавин). Лактофлавин удалось выделить в хи мичеси чистом виде и доказать его тождество с витамином В2. Витамин В2-желтое кристалическое вещество, хорошо растворимое в воде, разрушающееся при облучении ультрафиолетовыми лучами с образова нием биологически неактивных соединений (люмифлавин в щелочной среде и люмихром в нейтральной или кислой). Наличие активных двойных связей в циклическрй структуре рибофлавина обуславливает некоторые химические реакции, лежащие в основе его биологического действия. Присоединяя водрод по месту двойных связей, ок рашенный рибофлавин легко превращается в бесцветное лейкосоединение. Последнее, отдавая при соответствущих условиях водород, снова пере ходит в рибофлавин, приобретая окраску. Таким образом, химические особен ности строения витамина В2 и обусловленные этим строением свойства предопредиляют возможность участия витамина В2 в окислительно-восста новительных прцессах. Витамин В2 широко распростренён во всех животных и растительных тканях. Он встречается либо в свободном состоянии(например, в молоке, сетчатке), либо, в большенстве случаёв, в виде соединения, связанного с белком. Особенно богатым источник4ом витамина В2 являются дрожжи, пе чень, почки, сердечная мышца мелкопитающих, а также рыбные продукты. Довольно высоким содержанием рибофлавина отличаются многие растительные пищевые продукты. Ежедневная потребность человека в витамине В2, по-видемому, равня ется 2-4 мг рибофлавина. Витамин В2 встречается во всех растительных и животных тканях, хо тя и в различных количествах. Это широкое распространение витамина В2 соответствует участию рибофлавина во многих биологических процес сах. Действительно, можно считать твёрдо установленным, что существует группа ферментов, являющихся необходимыми звеньями в цепи катализаторов боилогического окисления, которые имеют в составе своей простетической группы рибофлавин. Эту группу ферментов обычно называют флавиновыми ферментами. К ним принадлежат, например, желтый фермент, диафораза и ци тохромредуктаза. Сюда же относятся оксидазы аминокислот, которые осу ществляют окислительное дезаменированиеаминокислот в животныхтка нях. Витамин В2 входит в состав указанных коферментов в виде фосфорного эфира. Так как указанные флавиновые ферметны находятся во всех тка нях, то недостаток в витамине В" приводит к падению интенсивности тка невого дыханидыхания и обмена веществ в целом, а следовательно, и к за едлению роста молодых животных. В последнее время было установленно, что в состав простетических групп ряда ферментов, помимо флавоновой группы, входят атомы метал лов(Cu, Fe, Mo). Вещества группы витамина В6 по своей химической природе являются производными пиридина. Одно из них-пиридоксол (2-метил-3окси-4, 5-диокси метилпиридил)-белое кристалическое вещество, хорошо растворимое в воде и спирте. Пиридоксолустойчив по отношению к кислотам и щелочам(например, 5 н. коцетрации), но легко разрушается под влиянием света при pH=6, 8. СОДЕРЖАНИЕ ВИТАМИНА В6 В НЕКОТОРЫХ ПРОДУКТАХ И ПОТРЕБНОСТЬ В НЁМ. Витамин В6 весьма распространён в продуктах как живого, так и рас тительного происхождения. Особенно богаты им рисовые отруби, а также за родыши пшеницы, бобы, дрожжи, а из животных продуктов-почки, печень и мыш цы. Потребность человека в этом витамине точно не установлена, но при некоторых формах дерматитов, не поддающихся излечению витамином РР или другими витаминами, внутривенное введение 10-100 мг пиридоксина давало положительный лечебный эффект. Предпологают, что потребность организма человека в этом витамине составляет приблизительно 2 мг в день. У человека недостаточность витамина В6 чаще всего возникает в ре зультате длительного приёма сульфаниломидов или антибиотиков-синтоми цина, левомицина, биомицина, угнетающих рост кишечных микробов, в норме синтезирующих пиридоксин в колличестве, достаточном для частичного пок рытия потребности в нём организма человека. Два производных пиридоксила-пиридоксаль и пиридоксамин-играют важную роль в обмене аминокислот. Фосфорилированный пиридоксаль(фосфо пиридоксаль)участвует в реакции переаминирования-переносе аминогруппы с аминокислоты на кетокислоту. Другими словами, система фосфопиридок саль-фосфопиродоксамин выполняет коферментную функцию в процессе пере аминирования. Кроме того, было показано, что фосфопиридоксаль является кофермен том декарбоксилаз некоторых аминокислот. Таким образом, две реакции азо тистого обмена: переаминирование и декарбоксилирование аминокислот осу ществляются при помощи одной и той же коферментной группы, образующейся в организме из витамина В6. Далее установлено, что фосфопиридоксаль иг рает коферментную роль превращения триптофана, которое, по-видимому, и ведёт к биосинтезу никотиновой кислоты, а также в превращениях ряда се русодержащих и оксиаминокислот. На основании ряда работ было установлено, что в печени животных содержится вещество, регулирущее кровотворение и обладающее лечебным действием при злокачественной (пернициозной) анемии у людей. Уже однок ратная инъекция нескольких миллионных долей грамма этоговещества вызы вает улучшение кровотворной функции. Это вещество получило название ви тамина В12, или антианемического витамина. Применение препаратов витамина В12 с лечебной целью обнаружилоин тересную особенность: витамин В12 оказывает антианемическое действие при злокачественном малокровии только в том случае, если его вводят па рентерально, и, наоборот, он малоактивен при применении через рот. Однако если давать витамин В12 в сочетании с нейтрализованным нормальным желу дочным соком (который сам по себе не активен), то наблюдается хороший лечебный эффект. Считают, что у здоровых людей желудочный сок содержит белок-мукоп ротеид- "внутренний фактор" Касла, который соединяется с витамином В12("внешний фактор"), образуя новый, сложный белок. Витамин В12, связан ный в таком белковом комплексе, может успешно всасываться из кишечни ка. При отсутствии "внутреннего фактора" всасывании витамина В12 резко нарушается. У больных злокачественной анемией в желудочном соке бе лок, необходимый для образования комплекса с витамином В12, отсутствует. В этом случае всасывание витамина В12 нарушается, уменьшается ко личествовитамина, поступающего в ткани животного организма, и таким пу тём возникает состояние авитаминоза. Эти данные представилиновое оъяс нение связи, которая существуетмежду развитием злокачественной анемии и нарушением функции желудка. Пернициозная анемия хотя и является авита минозом, но возникает на почве органического заболевания желудка-нару шения секреции слизистой оболочкой желудка "внутреннего фактора" Касла. По-видимому, витамину В12, точнее кобамидным коферментам, принадле жит важнейшая роль в синтезе, а возможно, и в переносе подвижных метиль ных групп. В процессах синтеза и переносаодноуглеродистых фрагментов наблюдается связь (механизм которой ещё не выяснен) между фолиевыми кислотами и группой кобаламина. Предполагают, что витамин В12 учавствует также в ферментной системе. К числу наиболее известных с давних времён заболеваний, возникаю щих на почве деффектов в питании, относится цинга, или скорбут. В средине века в Европе цинга была одной из страшных болезней, принимавший иногда характер повального мора. Наибольшее число жертв цинга уносила в могилу в зимнее и весенние время года, когда население европейских стран было лишено возможности получать в достаточном колличестве свежие овощи и фрукты. Окончательно вопрос о причинах возникновения и способов лечения цинги был разрешен экспериментально лишь в 1907-1912 гг. в опытах на морских свинках. Оказалось, что морские свинки, подобно людям, подвержены заболеванию цингой, которая развивается на почве недостатков в питании. Стало очевидным, что цинга возникает при отсутствии в пищи особого фактора. Этот фактор, предохраняющий от цинги, получил название витамина С, антицинготного, или антискорбутного, витамина. Химическая природа аскорбиновой кислоты была выяснена после выде ления её в кристалической форме из ряда животных и растительных про дуктов, особенно большое значение в ряду этих исследований имели работы А. Сент-Дьердьи и Хэворта. Строение витамина С было окончательно установленно синтезом его из L-ксилозы. Витамин С получил название L-аскорбиновой кислоты. L-Аскорбиновая кислота представляет собой кристалическое соедине ние, легко растворимое в воде с образованием кислых растворов. Наиболее замечательной особенностью этого соединения является его способность к обратному окислению (дегидрированию) с образованием дегидроаскорбино вой кислоты. Таким образом, L-аскорбиновая кислота и её дегидроформа образуют окислительно-восстановительную систему, которая может как отдавать, так и принимать водородные атомы, точнее электроны и пратоны. Обе эти формы обладают антискорбутным действием. В присутствии широко распространён ного в растительных тканях фермента-аскорбиноксидазы, или аскорбина зы, аскорбиновая кислота окисляется кислородом воздуха с образованием дегидроаскорбиновой кислоты и перекиси водорода. Аскорбиновая кислота, особенно её дегидроформа, является весьма не устойчивым соединением. Превращение в дикетоулоновую кислоту, не облада ющую витаминной активностью, является необратимым процессом, который за канчивается обычно окислительным распадом. Наиболее быстро витамин С разрушается в присутствии окислителей в нейтральной или щелочной среде при нагревании. Поэтому при различных видах кулинарной обработки пищи часть витамина С обычно теряется, аскорбиновая кислота обычно разруша ется также и при изготовлении овощных и фруктовых консервов. Особенно быстро витамин С разрушается в присутствии следов солей, тяжёлых метал лов (железо, медь). В настоящее время, однако, разработаны способы приго товления консервированных фруктов и овощей с сохранением их полной ви таминной активности. Важно отметить, что большинство животных, за исключением морских свинок и обезьян, не нуждается в получении витамина С извне, так как ас корбиновая кислота синтезируется у них в печени из сахаров. Человек не обладает способностью к синтезу витамина С и должен обязательно упот реблять его с пищей. Потребность взрослого человека в витамине С соответствует 50-100мг аскорбиновой кислоты в день. В организме человека нет сколько нибудь значительных резервов витамина С, поэтому необходимо системати ческое, ежедневное поступление этого витамина с пищей. Основными источниками витамина С являются растения. Особенно много аскорбиновой кислоты в перце, хрене, ягодах рябины, черной смородины, зем ляники, клубники, в апельсинах, лимонах, мандаринах, капусте (как свежей, так и квашенной), в шпинате. Картофель хотя и содержит значительно мень ше витамина С, чем вышеперечисленные продукты, но, принимая во внимание значение его в нашем питании, его следует признать наряду с капустой основным источником снабжения витамином С. Здесь можно напомнить, что эпидемии цинги, свирепствовавшие в сред ние века в Европе в зимнее время и весенние месяцы года, исчезли после введения в сельское хозяйство европейских стран культуры картофеля. Необходимо обратить внимание на важнейшие источники витамина С непищевого характера-шиповник, хвою (сосны, ели и лиственницы) и листья черной смородины. Водные вытяжки из них представляют собой почти всегда доступное средство для предупреждения и лечения цинги. По-видимому, физиологическое значение витамина С теснейшим обра зом связано с его окислительно-восстановительными свойствами. Возмож но, что этим следует объяснить и изменения в углеводном обмене при скорбуте, заключающиеся в постепенном исчезновением гликогена из печени и вначале повышенном, а затем пониженном содержания сахара в кро ви. По-видимому, в результате расстройства углеводного обмена при экспе риментальном скорбуте наблюдается усиление процесса распада мышечного белка и появление креатина в моче (А. В. Палладин). Большое значение име ет витамин С для образования коллагенов и функции соединительной ткани. Витамин С играет роль в гидроксилировании и окисления гормонов коры надпочечников. Нарушение в превращениях тирозина, наблюдаемое при цин ге, также указывает на важную роль витамина С в окислительных процессах. В моче человека обнаруживается аскорбиновая, дегидроаскорбиновая, дике тогулоновая и щавелевая кислоты, причём две последнии являются продук тами необратимого превращения витамина С в организме человека. Ретинол (витамин А, антиксерофтальмический, антиинфекционный, витамин Ратинол называют витамином роста, так как он необходим для обеспе нения процессов роста и развития человека, формирования скелета. Ретинол участвует в биосинтезе глюкопротеинов, входящих в состав слизистых оболочек и других барьерных тканей, поэтому он необходим для нормаль ной функции слизистых оболочек глаз, дыхательной, пищеварительной сис тем и мочевыводящих путей. Альдегидная форма витамина А входит в состав зрительного пурпура, обеспечивая адаптацию глаз к различной освещён ности среды. Ретинол разрушается при освещении ультрафиолетовыми лучами, под влиянием кислорода воздуха, а также при наличии в жирах продуктов окис ления жирных кислот. Суточная потребность витамина А составляет 1, 5 - 2, 5мг; она может удовлетворять В-каротином, который превращается в ретинол в стенке тон кого кишечника и печени. Потребность в витамине А возрастает при рабо те, связанной с напряжением органа зрения (водители всех видов транс порта, ювелиры и т. п. ) или с химическими веществами, пылями, раздражающими слизистую оболочку глаз, верхних дыхательных путей, кожу. В результате дефицита ретинола в питании замедляется рост, нару шается способность зрительного аппарата адаптироваться к различной степени освещённости среды, происходит ороговения слизистых оболочек дыхательных путей, кожи, глаз. В этих тканях появляются трещины, в резуль тате происходит их инфицирование, развивается воспаление. Ретинол встречается только в продуктах животного происхождения-печени скота, трески, икре осетровых рыб, сливочном масле, сырах. Вменьшем коли честве ретинол содержится в сметане, сливках, жирном твороге и жирной рыбе. Источником В-каротина являются оранжево-окрашенные овощи, яго ды, фрукты. Богаты В-каротином морковь, особенно красная, садовая ряби на, перец красный, зелень петрушки, абрикосы, тыква, зелёный горошек, череш ня, смородина. В-каротин лучше усваивается из растительных продуктов после кулинарной обработки (отваривание, измельчение), чем из сырых. В некоторых продуктах животного происхождения также есть В-каротин, нап ример в сливочном масле (особенно весной и летом), яичном желтке. При правильной кулинарной обработке сохраняется около 70 % витамина А. Кальциферол регулирует обмен кальция и фосфора, обеспечивает всасывание этих элементов в тонком кишечнике, а также реабсорбцию фосфора в почеч ных канальцах и перенос кальция из крови в костную ткань, т. е. участву ют в её формировании. Кальцифирол устойчив к воздействию высокой температуры, не разрушается при кулинарной обработке. Суточная потребность витамина D составляет для взрослых 100 МЕ (2, 5мкг). Она повышается при малой солнечной инсоляции (зимой), а также при работе под землёй (шахтёры). Это связано со снижением превращения в витамин D3 7-дигидрохолестерина, содержащегося в коже, которое происхо дит под влиянием ультрафиолетовых лучей. Длительное отсутствие кальциферола в питании у детей приводит к разви тию рахита. Основные симптомы этого заболевания связаны с нарушением нормального процесса костеобразования. Развивается остеомаляция-размяг чение костей. Под тяжестью тела ноги деформируются, приобретают О- или Х-образную форму. На костно-хрящевой границе рёбер отмечаются утолщения ("рахитические клетки" ). Грудная клетка деформируется ("куриная грудь). Для детей с явными признаками рахита характерна неустойчивость к инфекциям, вялость, пониженный тонус мышц, в том числе живота. Повышен ное газообразование способствует к увеличению его объёма. При длительном дефиците кальциферола у взрослых развивается осте опороз-разрежение костей: кости становятся хрупкими вследствии вымы вания из них уже отложившихся солей. В результате возникают частые пе реломы, которые медленно заживают. Развивается кариес зубов. Ранними признаками D-витаминной недостаточностью является раздрожитель ность, плохой сон , потливость, потеря аппетита. ВитаминD содержится в основном в продуктах животного происхождения-пе чени, молочных жирах, жире из печени трески, икре рыб. Токоферолы участвуют в процессе тканевого дыхания; они являются эф фективными антиокислителями, предохраняющими организм от образования избыточного количества свободных окислительных радикалов; повышают устойчивость мембран эритроцитов. Посколько половые железы очень чувс твительны к их действию, характерным следствием Е-авитаминоза является нарушение функции размножения. Витамин Е необходим для поддержания нор мальных процессов обмена веществ в скелетных мышцах, мышце сердца, а также в печени и нервной системы. Биологической активностью обладают несколько близких по структуре сое динений. Они устойчивы к нагреванию, но разрушаются под влиянием ультра фиоллетовых лучей, а также при прогоркании масел. Суточная потребность в токофероле для взрослых людей составляет 12-15мг. Она повышается при тяжёлой физической работе, в условиях недостатка кислорода, у спортсменов. Дефицит токоферола в питании может возникнуть при длительном отсутс твии в пищевом рационе растительных масел. Для Е-гиповитаминоза харак терна мышечная слабость, нарушение половой функции, периферического кро вообращения, разрушение эритроцитов. Богатым источником витамина Е являются растительные масла (подсолнеч ное, соевое, хлопковое, кукурузное), а также зелёные листья овощей, яичные желтки. Витамин К участвует в синтезе протромбина и ряда соединений, необходи мых для свёртывания крови. Активностью витамина К обладают и некоторые другие производные нафтохинона. Витамин К устойчив к нагреванию, разрушается под влиянием света, неус тойчив к щелочной среде. Суточная потребность в витамине К у взрослых составляет 0, 2 - 0, 3 мг. Основным признаком дефицита витамина К в пище является кровоточи вость. Она развивается при нарушении протромбинобразующей функции пече ни, оттока желчи, приёме лекарств, подавляющих жизнидеятельность нормаль ной микрофлоры толстого кишечника. Богатым источником витамина К являются листовые овощи, цветная и бело качанная капуста, томаты, картофель, а также печень. У здоровых людей витамин К синтезируется микрофлорой кишечника. В природе практически нет ни одного продукта, в котором находились бы все витамины в количестве, достаточном для удовлетворения в них потребнос тей организма и взрослого человека, и ребёнка. Поэтому необходимо макси мальное разнообразие меню: наряду с продуктами животного происхождения, зерновыми, должны быть овощи и плоды, в том числе в сыром виде. Для сохранения витаминов в пищевых продуктах, подвергнутых кулинар ной обработке или хранению, необходимо соблюдать следующие условия: -не проводить первичную обработку пищевых продуктов под ярко -мыть пищевые продукты в целом виде или крупным куском, нарезать их непосредственно перед приготовлением пищи; не оставлять их в воде на -не сливать воду в которой замачивали бобовые или крупы, а использо -подготовленные овощи сразу подвергать тепловой обработке. При необходимости хранения очищенных овощей помещать их в прохладное -строго соблюдать время тепловой обработки, не допускать перегрева; -плотно закрывать посуду, в которой проводят тепловую обработку; -шире применять те виды кулинарной обработки, которые не требуют длительного нагревания; овощи и картофель лучше варить в кожуре или -необходимой составной частью каждодневного рациона должны быть сырые овощи и фрукты, ягоды. Резать и тереть овощи, смешивать их и заправлять майонезом, растительным маслом или сметаной только -квашеные и солёные овощи хранить под грузом, покрытым рассолом. Не промывать квашеную капусту, так как при этом теряется более 50% -использовать овощные отвары для приготовления супов и соусов; минеральными и вкусовыми веществами, например кочерыжки капусты, -для повышения витаминной ценности питания в рацион целесообразно включать напитки из сухих плодов шиповника, пшеничных отрубей -проводить витаминизацию готовой пищи, молока в соответствии с приказом Минздрава СССР № 695 от 24 августа 1972г. ” О дальнейшем С - витаминизация аскорбиновой кислоты должна проводиться в столо вых промышленных предприятий и вузов в весенне-зимний период. В школах, школах-интернатах, диетических столовых на крайнем Севере следует ежедневно витаминизировать первые и третьи блюда, в том При оценке состава витаминов в рационах следует учесть потери их в процессе кулинарной обработки продуктов. Соответствующие данные IV. Заключение. Пути обеспечения пищевых рационов витаминами. |
|
© 2007 |
|