РУБРИКИ |
Числовые системы - (реферат) |
РЕКЛАМА |
|
Числовые системы - (реферат)Числовые системы - (реферат)Дата добавления: март 2006г. ТЕМА IV. ЧИСЛОВЫЕ СИСТЕМЫ Определение: Множество называется числовым, если его элементами являются числа. Известны следующие числовые системы: В основе расширения числовых множеств лежат следующие принципы: если множество А расширяется до множества В, то: 1) А М B; 2) операции и отношения между элементами, выполнимые во множестве А, сохраняются и для элементов множества В; 3) во множестве В выполняются операции, не выполнимые или частично выполнимые во множестве А; 4) множество В является минимальным расширением множества А, обладающим свойствами 1) – 3). Множество натуральных чисел N строго определяется с помощью аксиом Пеано. 1. Существует натуральное число 1, не следующее ни за каким натуральным числом (натуральный ряд начинается с 1). 2. Каждое натуральное число следует только за одним и только одним натуральным числом (в натуральном ряду нет повторений). 3. За каждым натуральным числом следует одно и только одно натуральное число (натуральный ряд бесконечен). 2) " а О М множеству М принадлежит и следующий за а элемент а1 то множество М совпадает с множеством натуральных чисел. Итак, множество N = { 1, 2, 3, 4, ....}. На аксиоме 4 основан метод математической индукции. Доказательство различных утверждений этим методом проводится от частного к общему, а затем делается вывод о справедливости данного утверждения. П р и м е р. Доказать методом математической индукции следующее равенство: 1. Проверим справедливость данного утверждения для n = 1: , т. е. 1 = 1. 2. Предположим, что данное равенство выполняется для k слагаемых, т. е. при n =k: 3. На основании предположения 2 докажем справедливость данного равенства для n = k+1: Теперь можно сделать вывод о том, что данное равенство справедливо " n О N. 2. Множество целых чисел Во множестве натуральных чисел выполняются операции сложения и умножения, но не всегда выполняется операция вычитания. Расширяя множествоN так, чтобы эта операция была выполнима, мы получаем множество целых чисел Z. Поэтому Z=N И {0, -1, -2, ....} или Z={.... -3, -2, -1, 0, 1, 2, 3, ....}, т. е. множество целых чисел Zсодержит множество натуральных чисел, число нуль и числа, противоположные натуральным. Основную роль во всей теории целых чисел играют следующие факты. Т е о р е м а о д е л е н и и с о с т а т к о м. Для любого целого а и b > 0 существуют и притом единственные целые q и r, такие, что а = bq + r, 0Ј r < | b |. О п р е д е л е н и е. Натуральное число р называется простым, если р > 1 и р не имеет положительных делителей, отличных от 1 и р. О с н о в н а я т е о р е м а а р и ф м е т и к и. Для каждого натурального числа n > 1 существует единственное разложение на простые множители: , где p1, p2, .... , pk – простые числа, а - натуральные числа. Разложение называется каноническим. О п р е д е л е н и е. 1) Общим делителем целых чисел а1, а2, .... , аn называется целое число d, такое, что a1 : d, а2 : d, .... , аn : d. 2) Наибольшим общим делителем целых чисел а1, а2, .... , аn называется такой положительный общий делитель чисел а1, а2, .... , аn, который делится на любой другой общий делитель этих чисел. Обозначается: d = (а1, а2, .... , аn). Наибольший общий делитель целых чисел а и bможет быть найден с помощью алгоритма Евклида, в основе которого лежит теорема о делении с остатком. Последний, отличный от нуля, остаток и будет наибольшим общим делителем чисела и b. П р и м е р. Найти НОД чисел 1173 и 323. Последовательным делением находим: 1173 = 323ґ3 + 204; О п р е д е л е н и е. Наименьшим общим кратным целых чисел а1, а2, .... , аn, отличных от нуля, называется наименьшее положительное число, кратное всем этим числам. Обозначают: m=[ а1, а2, .... , аn]. 3. Множество рациональных чисел. Система действительных чисел Во множестве целых чисел выполняются операции сложения, вычитания и умножения, но не всегда выполняется операция деления. Расширяя множествоZтак, чтобы эта операция была выполнима, получаем новое числовое множество множество рациональных чиселQ, т. е. Q= r=, m, n О Z, n№0. Множество рациональных чисел можно еще определить как множество бесконечных периодических десятичных дробей. Если же число нельзя представить в виде отношения двух целых чисел, то его называют иррациональным числом. К необходимости введения понятия иррационального числа приводит рассмотрение многих задач, в частности - задачи измерения некоторых отрезков (например, длины диагонали квадрата со стороной, равной единице). Иррациональное число представляется непериодической бесконечной десятичной дробью. Например, рациональные числа и представляются следующими десятичными дробями: = 0, 75; = 0, 333 .... = 0, (3). Иррациональные числа и p представляются непериодическими бесконечными дробями: = 1, 414.... ; p = 3, 14159...... Множество, состоящее из всех рациональных и всех иррациональных чисел, называется множеством действительных чиселR. Геометрически действительные числа изображаются точками числовой прямой. Отметим, что между множеством действительных чисел и множеством точек числовой прямой установлено взаимно однозначное соответствие. Однако действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение с действительными коэффициентами. Например, уравнение видах2+ 1= 0 действительных корней не имеет. А это означает, что система действительных чисел нуждается в расширении. О п р е д е л е н и е. Множество чисел вида а + bi, а, b О R, i2 = -1, называется системой комплексных чисел С. а - действительная часть комплексного числа, bi - мнимая часть комплексного числа, i = - мнимая единица, b - коэффициент при мнимой единице. Запись числа в виде z = а + bi называется алгебраической. Комплексное число z = а + bi равно нулю тогда и только тогда, когда а = 0 и b = 0. Два комплексных числа z1 = а1 + b1i и z2 = а2 + b2i называются равными, если а1 = a2, и b1 = b2, в этом случае пишут: z1 = z2. Число = а - bi называется сопряженным для числа z = а + bi, при этом числа z и называются взаимно сопряженными. Например, числа z = 2 + i и z = 2 - i; z = -5 - i и z = -5 + i, z = i и z = -i будут взаимно сопряженными. Арифметические действия над комплексными числами проводятся по следующим правилам. Пустьz1= а1+b1i z2= а2+b2i. Тогда: ; ; . Таким образом, видим, что если z= a+bi и =a-bi, то z= a2+b2. П р и м е р ы. Выполнить действия: Геометрически комплексные числа можно изображать точками плоскости, абсциссами которых служат действительные части, а ординатами - коэффициенты при мнимой единице. Таким образом, еслиz= a+bi, то на плоскости ХОУ это будет точка М(а, b). Так как любой вектор плоскости с началом в точке O(0, 0) определяется координатами конца, то комплексные числа также изображают радиус– векторами (рис. 1). Кроме алгебраической формы комплексное число может быть записано с помощью тригонометрической формы. Введем следующие определения. О п р е д е л е н и е. Модулем комплексного числа z= а+ bi называется арифметический квадратный корень из суммы квадратов его действительной части и коэффициента при мнимой единице: |z| = r =. О п р е д е л е н и е. Аргументом комплексного числа z = а + bi называется число , для которого . Возьмем на плоскости точку М(а, b), пусть ей соответствует комплексное число z = а + bi. Обозначим через j угол, который образует радиус – вектор ОМ с положительным направлением оси ОХ. Из D ОМА (рис. 2) AO = OMcosj, AM = ОМsinj, но ОМ= = г, ОА =а; AM =b; тогда z = а + bi = rcosj + irsinj = r(cosj + isinj). Запись числа z = r(cosj + isinj) называется тригонометрической формой комплексного числа. С геометрической точки зрения, модуль комплексного числа представляет собой длину радиус-вектора, который это число изображает, а аргумент - это угол, который образует данный радиус-вектор с положительным направлением осиОХ. П р и м е р. Найти модуль, аргумент и записать число z = 1- i в тригонометрической форме. Имеем r = = ; cosj =; sinj =; тогда j = и . Используя тригонометрическую форму комплексного числа, умножение и деление комплексных чисел можно выполнять так: если, , то z1z2 = r1r2[cos (j1+j2) + isin (j1+j2)], . Операции же возведения в целую степень и извлечения корня удобнее проводить в тригонометрической форме. Так, для возведения в целую степеньn комплексного числа z = r(cosj + isinj) известна формула Муавра: zn = rn(cos nj + isin nj). Для извлечения корня степени n О N из комплексного числа z = =r(cos j + isin j ) используется следующая формула: , k = 0, 1, 2, .... , n-1. П р и м e p. Найти . Найдем тригонометрическую форму подкоренного выражения: ; ; ; ; . 3. Какие принципы лежат в основе расширения числовых множеств? 4. Как определяется множество натуральных чисел? 11. Какие формы употребляются для записи комплексных чисел? 12. Какова геометрическая интерпретация комплексного числа, его модуля и аргумента? 13. Расскажите об умножении, делении и возведении в степень комплексных чисел, заданных в тригонометрической форме. 2. По делимому а и остатку r найти делители b и соответствующие частные q, если: а) a = 100; r = 6; б) а = 158; r = 37; в) a = 497; r = 16. 3. Найти наибольшее целое число, дающее при делении на b = 13 частное q = 17. 4. Найти НОД каждой из следующих систем чисел: 6. Каким числом, рациональным или иррациональным, является значение выражения 8 - 5х при х = 0, 6; 1, 2; -3, 4? 7. Среди чисел ; 0; 0, (25); ; 3, 14; ; 0, 818118111811118.... укажите рациональные и иррациональные. 8. Выполнить указанные действия: 9. Построить множество точек, изображающих комплексные числах, удовлетворяющие соответствующим условиям: a) | z - (1 + i)| > 2; б) | z + 2 - i | Ј 1; в) {l Ј |z| Ј 2, 0 < arg z Ј ; г) 3 Ј . 10. Найти тригонометрическую форму комплексного числа: |
|
© 2007 |
|