РУБРИКИ

Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС

   РЕКЛАМА

Главная

Логика

Логистика

Маркетинг

Масс-медиа и реклама

Математика

Медицина

Международное публичное право

Международное частное право

Международные отношения

История

Искусство

Биология

Медицина

Педагогика

Психология

Авиация и космонавтика

Административное право

Арбитражный процесс

Архитектура

Экологическое право

Экология

Экономика

Экономико-мат. моделирование

Экономическая география

Экономическая теория

Эргономика

Этика

Языковедение

ПОДПИСАТЬСЯ

Рассылка E-mail

ПОИСК

Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС

Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ТЕПЛОТЕХНИКИ И ГИДРАВЛИКИ РЕФЕРАТ ПО ТРАНСПОРТНОЙ ЭКОЛОГИИ СИСТЕМЫ НЕЙТРАЛИЗАЦИИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ В ВЫПУСКНОЙ СИСТЕМЕ Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС ВЫПОЛНИЛ: студент группы АТ-312 Литвинов Александр Владимирович ПРОВЕРИЛ: Захаров Евгений Александрович ВОЛГОГРАД 2004 СОДЕРЖАНИЕ:

Введение

3

1.

Способы нейтрализации отработавших газов в выпускной сис­теме

4

2.

Нейтрализация отработавших газов в выпускной системе бен­зиновых двигателей

4
Эволюция каталитических нейтрализаторов4
Устройство и принцип действия каталитических нейтрализа­торов5
Разогрев каталитических нейтрализаторов6
Обратная связь7
Кислородные датчики8
Условия нормальной работы каталитических нейтрализаторов10

3.

Нейтрализация отработавших газов в выпускной системе ди­зельных двигателей

11
Комплексная очистка отработавших газов дизеля11
Сажевые фильтры11
Система DRNR (TOYOTA)12
Плазменный нейтрализатор13
Обратная связь дизеля14
Система SCR (MERCEDES–BENZ)15

Заключение

16
Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Введение Загрязнение воздуха вредными выбросами автомобилей в конце ХХ века стало одной из глобальных экологических про­блем. Путь ее решения только один - автомобиль должен стать экологически чистым. Важное место здесь принадлежит системам ней­трализации, способным в несколько раз снизить токсичность выхлопных газов. Всего в отработавших газах обнаружено около 280 компонентов. По своим химическим свойствам, характеру воздействия на организм чело­века вещества, содержащиеся в отработавших газах, подразделяются на несколько групп:

СОСТАВ ОТРАБОТАВШИХ ГАЗОВ

БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ И ДИЗЕЛЕЙ

Компоненты

отработавших

газов

Концентрация, %

Бензиновый

двигатель

Дизель

Азот74-7774-78
Кислород0,3-8,02,0-18
Водяной пар2,0-5,50,5-9,0
Оксиды углерода0,5-120,005-0,4
Оксиды азота0,01-0,80,004-0,6
Диоксид серы-0,002-0,02
Углеводороды0,2-3,00,01-0,3
Альдегиды0-0,20,001-0,009

Сажа, г/мз

0-0,040,01-1,1 и более

Таблица 1 – Состав отработавших газов бензиновых и ди­зельных двигателей

1.нетоксичные: азот, ки­слород, водород, водяные пары, а также диоксид углерода; 2.токсичные: оксид угле­рода, оксиды азота, многочис­ленная группа углеводородов, альдегиды, сажа. Причем сажа сама по себе нетоксична, но она адсорбирует на поверхности частиц канцерогенные полицик­лические углеводороды, в том числе наиболее вредный и ток­сичный бенз(а)пирен. При сго­рании сернистых топлив образу­ются неорганические газы - ди­оксиды серы и сероводо­род. Токсичные компоненты со­ставляют 0,2–5% от объема от­работавших газов, в зависимо­сти от типа двигателя и режима его работы.

ЕВРОПЕЙСКИЕ И КАЛИФОРНИЙСКИЕ (LEV, ULEV, SULEV) СТАНДАРТЫ

Нормы

токсичности

Бензиновый двигатель

Дизельный

двигатель

CO

CH

NOx

CO

NOx

CH+NOx

Сажа

Евро III, с 2000 г.2,30,20,150,640,50,560,05
Евро IV, с 2005 г.1,00,10,080,50,250,300,025
LEV2,10,20,15----
ULEV1,00,020,03----
SULEV, с 2004 г.0,620,0060,0125---0,006

Таблица 2 – Европейские и американские нормы токсичности от­работавших газов

За долгое время существования проблемы автомобильных выбросов и загрязнения ими атмосферного воздуха было разработано множество ме­тодов и способов, позволяющих уменьшить количества выхлопов или снизить их токсичность. В настоящее время разрабатываются и претво­ряются в жизнь ме­ро­приятия по снижению за­грязнения атмосферы вы­бросами автомобильных двигателей, включающие в себя: 1.усовершенствование конструкций двигателей и повышение качеств изго­товления; 2.поиск новых видов топлива, применение раз­личных присадок к нему; 3.создание энергоси­ловых установок для ав­томобилей, выбрасывающих меньшее количество вред­ных веществ; 4.разработка устройств, снижающих содержание вредных компонен­тов в отработавших газах. Практика показала, что при этом достичь уровня токсичности от­работавших газов, требуемого законодательством развитых стран, первыми тремя способами нельзя. Поэтому получила широкое распро­странение нейтрализация отработавших газов в системе выпуска. В этом случае токсичные пары, вышедшие из цилиндров двигателя, ней­трализуются до выброса их в атмосферу. 1. Способы нейтрализации отработавших газов в выпускной сис­теме Существует несколько способов нейтрализации отработавших газов в выпускной системе автомобиля: 1.Окисление отработавших газов путем подачи к ним дополнитель­ного воздуха в термических реакторах. Термические реакторы уста­навливают на многих японских и американских двигателях. Термиче­ский реактор представляет собой теплоизолированный объем со специ­альной организацией течения отходящих газов, устанавливаемый в вы­пускной системе двигателя и осуществляющий термическое доокисление токсичных компонентов за счет собственного тепла отходящих газов. Термическая нейтрализация не зависит от вида сжигаемого топлива, наличия присадок и позволяет использовать в двигателях этилирован­ный бензин. Повысить температуру отработавших газов в реакторе можно, уменьшив теплопотери применением проставок-экранов, тепло­изоляцией корпуса реактора, использованием тепла реакции окисле­ния, а также кратковременным уменьшением угла опережения зажига­ния. Реакторы особенно эффективны на режимах богатой смеси при больших нагрузках, не выходят из строя со временем, однако не дают полного окисления СО и СН и не восстанавливают NOx, поэтому приме­няются как дополнительные устройства перед каталитическим нейтра­лизатором. 2.Поглощение токсичных компонентов жидкостью в жидкостных ней­трализаторах . Этот способ не получил широкого распространения из-за малой эффективности и необходимости частой замены жидкости. 3.Применение каталитических нейтрализаторов и сажевых фильтров (на автомобилях с дизельными двигателями) – в настоящее время наи­более актуальный. 2. Нейтрализации отработавших газов в выпускной сис­теме бензиновых двигателей Эволюция каталитических нейтрализаторов В конце 60-х годов, когда мегаполисы Америки и Японии стали буквально задыхаться от смога, инициативу взяли на себя правитель­ственные комиссии. Именно законодательные акты об обязательном снижении уровня токсичных выхлопов новых автомобилей вынудили про­мышленников усовершенствовать двигатели и разрабатывать системы нейтрализации. В 1970 году в Соединенных Штатах был принят закон, в соответ­ствии с которым уровень токсичных выхлопов автомобилей 1975 мо­дельного года должен был быть в среднем наполовину меньше, чем у машин 1960 года выпуска: СН — на 87%, СО — на 82% и NOх — на 24%. Аналогичные требования были узаконены в Японии и в Европе. Первым делом инженеры бросились совершенствовать системы питания и зажигания. Но было очевидно, что добиться столь существенного улучшения ситуации с токсичностью без применения дополнительных устройств просто невозможно. В 1975 году на американских машинах появились первые каталити­ческие нейтрализаторы отработавших газов — тогда еще двухкомпонент­ные, так называемого окислительного типа. Двухкомпонентными они на­зывались потому, что могли нейтрализовать только два токсичных ком­понента — СО и СН. Окислительными — потому, что происходившие реак­ции представляли из себя окисление (то есть фактически дожигание) молекул СО и СН с образованием углекислого газа СО2 и воды Н2О. На американских автомобилях 1975 года появились транзисторные системы зажигания с высокой энергией искры и свечи с медным сердеч­ником центрального электрода — это свело к минимуму пропуски зажи­гания и последующие вспышки несгоревшего топлива в нейтрализаторе, которые грозят оплавлением керамики. В 1977-м к нему добавили "противоазотную" секцию, а еще через пару лет объединили все в едином корпусе, дав неправильное название "трехступенчатый" нейтрализатор. На самом деле речь идет не о сту­пенях, а о трех подавляемых классах вредных веществ. К 1990 году нейтрализатор переехал вплотную к выпускному кол­лектору, чтобы быстрее нагреваться до рабочих температур (300ºС) – тем самым уменьшить вредные выбросы на стадии прогрева. В 1995 году фирма ”Эмитек” разработала технологию подогрева ка­тализатора мощным электрическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эмикэт”) была установлена на ”БМВ-Альпина В12”. Ну и, наконец, в 2000 году появилась цеолитовая ловушка углево­дородов (СН), задерживающая их при пуске мотора и лишь после на­грева до 220°С отдающая на "съедение" готовому к работе катализа­тору. Устройство и принцип действия каталитических нейтрализаторов Современные каталитические нейтрализаторы – это трехкомпонент­ные каталитические нейтрализаторы. Трехкомпонентный каталитический нейтрализатор представляет со­бой корпус из нержавеющей стали, включенный в систему выпуска до глушителя. В корпусе располагается блок носителя с многочисленными продольными порами, покрытыми тончайшим слоем вещества катализа­тора, которое само не вступает в химические реакции, но одним своим присутствием ускоряет их течение. Подпись: Рисунок 1 – Керамические соты

Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Химикам известно множество катализаторов - медь, хром, никель, палладий, родий. Но самой стойкой к воздействию сернистых соединений, ко­торые образуются при сгорании содержащейся в бензине серы, оказалась благородная платина. На долю катализаторов приходится до 60% себестои­мости устройства. Именно благодаря им происхо­дят необходимые химические реакции – окисление монооксида углерода (СО) и несгоревших углево­дородов (СН), а также сокращение количества окиси азота (NOx). В трехкомпонентном нейтрализаторе платина и палладий вызывают окис­ление СО и СН, а родий ”борется” с NOx. Кстати, родий – субпродукт при получении платины – наиболее ценный в этой троице. Чтобы увеличить площадь контакта каталитического слоя с вы­хлопными газами, на поверхность сот наносится подложка толщиной 20-60 микрон с развитым микрорельефом. Как правило, носителем в нейтрализаторе служит спецкерамика - монолит со множеством продольных сот-ячеек, на которые нанесена специальная шероховатая подложка (рис.1). Это позволяет максимально увеличить эффективную площадь контакта каталитического покрытия с выхлопными газами - до величин около 20 тыс. м2. Причем вес благо­родных металлов, нанесенных на подложку на этой огромной площади, составляет всего 2-3 грамма!!! Керамика сделана достаточно огне­упорной – выдерживает температуру до 800-850 ºС. Но все равно при неисправности системы питания и длительной работе на переобогащен­ной рабочей смеси монолит может не выдержать и оплавиться - и тогда каталитический нейтрализатор выйдет из строя. Именно поэтому так проблематично выглядит использование каталитических нейтрализаторов с керамическим носителем на карбюраторных двигателях. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Подпись: Рисунок 2 – Соты нейтра¬лизаторов Metalit Впрочем, все шире в качестве носителей каталитического слоя используются тончайшие металлические соты (рис.2). Это позволяет увеличить площадь рабочей поверхности, полу­чить меньшее противодавление, ускорить разо­грев каталитического нейтрализатора до рабо­чей температуры и, главное, расширить темпе­ратурный диапазон до 1000-1050ºС. Соты ней­трализаторов Metalit, изображенного на ри­сунке 2, сделаны из тонкостенного (толщиной всего 0,04 мм, а не 0,15 мм, как у керамики) листа хромоалюминиевой стали, для лучшей адгезии каталитического слоя легированной редкоземельным металлом иттрием. Такой нейтрали­затор выдерживает пиковые температуры до 1300ºС. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Делают это на Западе, конечно же, не для применения карбюрато­ров - там они почти забыты. Просто с по­явлением современных двигателей, рабо­тающих на переобедненных смесях, растут требования и к каталитическим нейтрали­заторам - они должны выдерживать более жесткие условия, которые керамике уже не по зубам. Упрощенно ход реакций в нейтрализа­торе выглядит так: CH+O2 -> CO2+H2O; NO+CO -> N2+CO2; Подпись: Рисунок 3 – Реакции в нейтрализатореCO+O2 -> CO2; NO+H2 -> N2+H2O. В результате токсичные со­единения CO, CH и NOx окисля­ются или восстанавливаются до углекислого газа СО2, азота N 2 и воды Н2О (рис.3). Широкое использование нейтрализаторов «взорвало» мировой рынок благородных металлов: 35% потребляемой платины, 45% палладия, 90% родия идет в автомобильные выпускные системы. Разогрев каталитического нейтрализатора На первый взгляд может показаться, что установка катализатора решает все экологические проблемы. Однако, температура, при кото­рой катализатор начинает действовать (температура активации), на­ходится в пределах 250–350°С. Время же, необходимое для разогрева, может достигать нескольких минут и зависит от типа автомобиля, способа его эксплуатации и температуры воздуха. Холодный катализа­тор практически неэффективен – следовательно, необходимо уменьшить время достижения температуры активации. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Подпись: Рисунок 4 – Каталитический нейтрализатор с электропо-догревомРеферат: Системы нейтрализации отработавших газов в выпускной системе ДВС К 1995 году фирма ”Эмитек” разработала технологию подогрева катализатора мощным элек­трическим сопротивлением. Основанная на этом принципе модель катализатора ”6С” (или ”Эми­кэт”) была установлена на ”БМВ-Альпина В12”. Подогреватель на металлической опоре крепится внутри катализатора (рис.4); его мощность – от 0,5 до 2, иногда 4 кВт, в зависимости от вели­чины сопротивления (от 0,05 до 0,35 Ом). Для примера, элемент в 1,5 кВт разогревает катали­затор до 400°С за 10 секунд. Компания ЭCИA пошла другим путем и предложила пусковой катализатор. Он размещается в специальном ответвлении выпу­скной системы, имеет меньшие, чем основной, размеры и, стало быть, прогревается быстрее, после чего приводит в рабочее состояние ”стар­шего брата”. Чтобы снизить вредные выбросы при пуске хо­лодного двигателя, иногда применяют также встроенный в катализатор адсорбер углеводоро­дов. Как только рабочая температура достигнута, последние ”освобождаются” и окисляются самим катализатором. Среди подобных устройств можно назвать нейтрализатор ”Эдкэт” фирмы ”Делфай” или ”Пума” фирмы ”Корнинг”. Обратная связь Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Трехкомпонентный нейтрализатор наиболее эф­фективен при определенном составе отработавших газов (рис.5). Это значит, что нужно очень точно выдерживать состав горючей смеси возле так называемого стехиометрического отношения воздух/топливо, значение которого лежит в узких пределах 14,5 — 14,7. Если горючая смесь бу­дет богаче, то упадет эффективность нейтрализации СО и СН, если беднее — NOX. Подпись: Рисунок 6 – Современная компоновка систе-мы нейтрализации с системой бортовой диагностики OBD-II (on-board diagnostics) Поддерживать стехиометрический состав горючей смеси можно было только одним способом — управлять смесеобразованием, немедленно полу­чая информацию о процессе сгорания, то есть, организовав обратную связь (рис.6). Решение стало эпохальным. В выпускной коллектор поместили специально разрабо­танный кислородный датчик — так назы­ваемый лямбда-зонд (на Западе принято обозначать греческой буквой λ так называемый коэффициент избытка воздуха, то есть отношение стехиометрического состава смеси к текущему). Он вступает с раска­ленными выхлопными газами в электрохимическую реакцию и выдает сигнал, уровень кото­рого зависит от количества кислорода в вы­хлопе. Если кислорода осталось много — значит, смесь слишком бедная, если мало — богатая. А по результатам мгновенного анализа, которым занимается электроника, можно быстро корректировать состав смеси в ту или иную сторону. Напряжение на выходе кислородного датчика при­нимает два уровня. Если смесь бедная, то низковольтный сигнал дает команду на обогащение топливной смеси, и наоборот. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС На рис.7 изображен современный трехкомпонентный каталитический нейтрализатор. Второй кислородный датчик нужен для новейших систем бортовой диагностики OBD-II и от­слеживает эффективность нейтрали­зации. Подпись: Рисунок 7 – Современный нейтрализатор Впервые трехкомпонентные ней­трализаторы с обратной связью и кислородным датчиком появились на двигателях автомобилей Volvo в 1977 году. А сейчас ими оснащены все без исключения автомобили, ко­торые продаются на рынках цивилизованных стран. Кислородные датчики Подпись: Рисунок 8 – Кислородный дат-чикРеферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Датчик кислорода (рис.8) - он же лямбда-зонд - устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Он представляет собой гальванический источник тока, изменяю­щий напряжение в зависимости от температуры и наличия кислорода выхлопной трубе. Материал его, как правило, керамический элемент на ос­нове двуокиси циркония, покрытый платиной. Конструкция его предполагает, что одна часть соединяется с наружным воздухом, а другая - с выхлопными газами внутри трубы. В зависимости от концентрации ки­слорода в выхлопных газах, на выходе датчика появляется сигнал (рис.9). Уровень этого сигнала может быть низким (0,1...0,2В) или высоким (0,8...0,9В). Существуют также датчики сигнал на выходе, у которых изменяется от 0,1 до 4,9 В. Подпись: Рисунок 9 – Зависимость сиг-нала датчика от коэффициен-та избытка воздуха Таким образом, датчик кислорода - это своеобразный переключатель, сообщающий кон­троллеру впрыска о концентрации кислорода в отработавших газах. Контроллер принимает сигнал с лямбда-зонда, Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС сравнивает его со зна­чением, прошитым в его памяти и, если сигнал отличается от оптимального для теку­щего режима, корректирует длительность впры­ска топлива в ту или иную сторону. Таким об­разом, осуществляется обратная связь с кон­троллером впрыска и точная подстройка режи­мов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов. Бензиновому двигателю для работы требуется смесь с определен­ным соотношением воздух-топливо. Соотношение, при котором топливо максимально полно и эффективно сгорает, называется стехиометриче­ским и составляет 14,7:1. Это означает, что на одну часть топлива следует взять 14,7 частей воздуха. На практике же соотношение воз­дух-топливо меняется в зависимости от режимов работы двигателя и смесеобразования. Двигатель становится неэкономичным. Коэффициент избыточности воздуха при работе двигателя посто­янно меняется и диапазон 0,9 - 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например, ра­ботает на холостом ходу), необходимо по возможности более строгое соблюдение равенства Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС для того, чтобы трехкомпонентный катализа­тор смог полностью выполнить свое предназначение и сокра­тить объем вредных выбросов до минимума. Лямбда-зонды бывают одно-, двух-, трех- и четырехпроводные. Однопроводные и двухпроводные датчики применялись в самых первых системах впрыска с обратной связью (лямбда-регулированием). Одно­проводный датчик имеет только один провод, который является сиг­нальным. Земля этого датчика выведена на корпус и приходит на массу двигателя через резьбовое соединение. Двухпроводный датчик отличается от однопроводного наличием отдельного земляного провода сигнальной цепи. Недостатки таких зондов: рабочий диапазон темпе­ратуры датчика начинается от 300 ºС. До достижения этой темпера­туры датчик не работает и не выдает сигнала. Стало быть, необхо­димо устанавливать этот датчик как можно ближе к цилиндрам двига­теля, чтобы он подогревался и обтекался наиболее горячим потоком выхлопных газов. Процесс нагрева датчика затягивается, и это вно­сит задержку в момент включения обратной связи в работу контрол­лера. Кроме того, использование самой трубы в качестве проводника сигнала (земля) требует нанесения на резьбу специальной токопрово­дящей смазки при установке датчика в выхлопной трубопровод и уве­личивает вероятность сбоя (отсутствия контакта) в цепи обратной связи. Указанных недостатков лишены трех- и четырехпроводные лямбда зонды. В трехпроводный кислородный датчик добавлен специальный на­гревательный элемент, который включен, как правило, всегда при ра­боте двигателя и, тем самым, сокращает время выхода датчика на ра­бочую температуру. А так же позволяет устанавливать лямбда-зонд на удалении от выхлопного коллектора, рядом с катализатором. Однако остается один недостаток - токопроводящий выхлопной коллектор и необходимость в токопроводящей смазке. Этого недостатка лишен че­тырехпроводный лямбда-зонд - у него все провода служат для своих целей - два на подогрев, а два - сигнальные. При этом вкручивать его можно так как заблагорассудится. Ресурс датчика содержания кислорода обычно составляет 50 - 100 тыс. км и в значительной степени зависит от условий эксплуата­ции, качества топлива и состояния двигателя. Повышенный расход масла, переобогащенная смесь и неправильно отрегулированный угол опережения зажигания сильно сокращают жизнь лямбда-зонду. Дольше служат, как правило, датчики с подогревом. Рабочая темпера­тура для них обычно 315-320°C. В конструкцию этих датчиков включен нагревающий элемент, имеющий на разъеме свои кон­такты. Проверку работоспособности нагревательного элемента та­ких датчиков можно производить обычным омметром. Сопротивле­ние их обычно составляет от 3 до 15 Ом. Правильно работающий лямбда-зонд может многое сказать о том, в каком состоянии находится двигатель и его системы. На некоторых автомобилях с помощью датчика можно достаточно точно отрегулиро­вать содержание СО в выхлопных газах. Неисправный лямбда-зонд не­минуемо вызовет повышенный расход топлива и снижение мощностных характеристик двигателя. Следует отметить, что далеко не все неис­правности лямбда-зонда фиксируются блоком управления, а если фик­сируются, то блок управления переходит в режим управления впры­ском по усредненным параметрам, что тоже приводит к перечисленным выше результатам. Поэтому рекомендуется при малейших подозрениях провести диагностику, а при выявлении неисправности заменить лям­бда-зонд. Условия нормальной работы каталитических нейтрализаторов В наши дни каталитические нейтрализаторы распространяются по странам и континентам. Докатились они и до российской глубинки. А здесь их часто встречают... свинцом и ломом. Причина в том, что для нормальной работы катализатора необходимо соблюдать пустяковые по европейским понятиям условия. Посмотрим, какие же это "пус­тячки". Во-первых, как известно, даже случайная заправка бака этилиро­ванным бензином выводит катализатор из строя. Он окончательно "от­равляется" свинцом - остается только выбросить прибор. Во-вторых, катализатор эффективно работает только при строгом соблюдении состава топливной смеси - 14,7 весовых частей воздуха на одну часть бензина. Любой карбюратор, даже с электронной систе­мой управления, такой точностью и быстродействием для поддержания требуемого состава смеси не обладает. Таким образом, катализатор эффективен лишь в сочетании с сис­темой впрыска топлива с электронным управлением. На автомобиле появился микропроцессор, который, анализируя данные о температуре, расходе воздуха через коллектор, оборотах и т.п., а главное - сиг­налы, поступающие от каталитического нейтрализатора, регулирует работу электромагнитных форсунок впрыска топлива. Однако в случае выхода из строя свечи зажигания, перебоев в подаче топлива и т.д. мгновенно нарушается тонкое равновесие состава рабочей смеси - ка­тализатор теряет свою эффективность, причем в некоторых случаях навсегда. Поэтому микропроцессор контролирует работу систем и аг­регатов автомобиля, а о неисправностях сообщает водителю. Есть и еще одна проблема - каталитический нейтрализатор хорошо справляется с окислами азота, только когда их мало. Упрощенно кар­тина такова: окислов азота тем больше, чем выше температура в ка­мере сгорания, а чем она выше, тем больше КПД мотора. Для борьбы с окислами азота нашли простой выход. Соединили выпускной коллектор со всасывающим патрубком, направив часть выхлопных газов обратно в камеру сгорания со свежей рабочей смесью, что снижает наполнение цилиндров и, следовательно, мощность. Получается, что нейтрализа­тор вредит двигателю. Но и мотор не остается в долгу. Явный вред катализатору прино­сит так называемое перекрытие клапанов - момент, когда одновре­менно открыты впускной и выпускной клапаны. В цилиндре возникает, так сказать, сквозняк: рабочая смесь вылетает в выхлопную трубу через открытый выпускной клапан и отравляет чувствительный катали­затор. Однако перекрытие клапанов способствует лучшему наполнению цилиндров и повышению мощности мотора, поэтому пока ни один совре­менный двигатель без этого не обходится. Здесь приведены лишь не­которые примеры, показывающие, что в автомобиле все не просто. 3. Нейтрализация отработавших газов в выпускной системе дизель­ных двигателей Подпись: Рисунок 10 – Автомобиль с  дизельным двигателем В дизельном двигателе (рис.10) топливо впрыскиваРеферат: Системы нейтрализации отработавших газов в выпускной системе ДВС ется в цилиндр, уже наполненный рас­каленным сжатым воздухом и на образование "правильной" горючей смеси просто не остается времени. Даже при тончайшем распылении (для чего и повышают давление) не все микрочастицы топлива успевают обзавестись нужным количест­вом молекул кислорода - вот вам и сажа. Сни­жение температуры в цилиндре по бензиновому рецепту только ухудшает картину. Вообще, ос­новное противоречие дизеля, которое еще никто до конца не разрешил, - между снижением вы­бросов сажи и окислов азота: улучшая один параметр, неизбежно пор­тим второй. Комплексная очистка отработавших газов дизеля Современные комплексные системы очистки отработавших газов для дизелей состоят из каталитических и жидкостных нейтрализаторов, а также сажевых фильтров. Сажевые фильтры Подпись: Рисунок 11 – Фильтр «Опеля»: 1 - вход газов с час-тицами сажи; 2 - фильтрующий элемент; 3 - датчи-ки давления; 4 - датчик температуры; 5 - выход. А - стадия накопления сажи; В - стадия ее выжигания

Подпись: Рисунок 12 – Совмещенный фильтр «Мерседес-Бенц»: 1 - лямбда-зонд; 2 - обычный окислительный нейтрализатор; 3 - фильтр частиц сажи; 4 - датчи-ки давления; 5 - датчики температуры

Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Фирмы, пропагандирующие экономичные легковые дизели, ради эко­логии пускаются во все тяжкие. Например, предлагают устанавливать дополнительные бачки с дорогими реактивами, снижающими темпера­турный порог разложения нако­пившейся в специальном нейтра­лизаторе сажи ("Пежо-607"). Вы­жечь, то есть окислить, нако­пившиеся в порах фильтра час­тицы можно лишь при достаточно высокой температуре, которой выхлопные газы правильно на­строенного дизеля не достигают. Даже если приказать управляю­щему двигателем контроллеру пе­риодически увеличивать подачу топлива, все равно градусов не хватает. Решение видели в до­бавке к солярке мочевины (прямо на АЗС) либо незначительного количества специального реа­гента, хранящегося в отдельном бачке (5 литров хватает на 80 000 км пробега). Это снижало температуру начала реакции гра­дусов на 100 и позволяло, обо­гатив смесь, очищать фильтр. Реализовать эти решения весьма сложно. Неудивительно, что бачки с реагентом прижились в основном на дорогих автомоби­лях, например, «Пежо-607». В фильтрах нового поколения общий принцип остался прежним: за­держать и уничтожить. Но как добиться нужной для сгорания частиц сажи температуры? Во- первых, фильтр разместили сразу за выпускным коллектором. Во-вторых, через каждые 300-500 км пробега контроллер включает режим многофазного впрыска, увеличивая количество посту­пающего в цилиндр топлива. И, наконец, главное: поверхность фильт­рующего элемента покрыта тонким слоем нового катализатора, который дополнительно повышает температуру выхлопных газов до необходимых 560-600°С. Отдаленно это напоминает работу каталитической бензино­вой грелки для рыболовов. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Фильтрующий элемент состоит, как правило, из керамической (кар­бид кремния) микропористой губки. Толщина стенок между ее каналами не превышает 0,4 мм, так что фильтрующая поверхность очень большая. Иногда эту «губку» делают из сверхтонкого стального волокна, также покрытого но­вым катализатором. Набивка настолько плотная, что задер­живает до 80% частиц размером 20-100 нм. Новые фильтры стали ак­тивно участвовать в управле­нии работой двигателя. Ведь режим обогащения включается по сигналу от датчиков давле­ния, установленных на входе и выходе фильтра. Когда раз­ность показаний становится значительной, компьютер вос­принимает это как признак за­купоренности «губки» сажей. А выжигание контролируют с по­мощью датчика температуры. Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Подпись: Рисунок 13 – Новый фильтр длиной 150-300 ми уста-навливают рядом с выпускным коллектором (двигатель «Рено» 2,2 л)

Активные фильтры уже поя­вились на дизельных моторах «мерседес-бенцев» С- и Е-классов (рис.12), в начале 2004 года приживутся в «Опеле-Вектра» (рис.11) и «Сигнум», «Рено-Вель Са-тис» (рис.13)... До 2006 года об экологии легковых дизелей производителям можно не беспокоиться. Но ведь 20% частиц пока попадают в воздух, а есть еще пылинки размером меньше 20 нм... Наверняка производители уже кол­дуют над новыми устройствами. Система DRNR Подпись: Рисунок 14 – Система DPNR "Тойота" разработала свою, не менее эффективную систему очи­стки, названную DPNR (рис.14). Она одно­временно обезвреживает и канцероген­ные частицы сажи, и про­сто вредные окислы азота (о СН и СО сегодня говорить уже стыдно – прой­денный этап). Главную роль играет новый микропористый керамический фильтр, покрытый слоем накапливаю­щего азот материала и катализатором на ос­нове платины. Во время работы дви­гателя на бед­ной смеси частицы сажи окисляются атомарным кисло­родом, освобождаю­щимся при соединении NO и О2 из выхлопных газов в процессе накопле­ния NO2. Периодически, когда компьютер кратковременно обогащает смесь, эти частицы окисляются кислородом, возникающим теперь уже при раз­ложении накопленных окислов в безвредный азот. DPNR показала снижение содержания сажи и NOx на 80% по срав­нению с действующими сегодня нормами, но применима лишь для дизелей последнего поколения, работающих с системой "коммон рейл" высокого давления на топливе с пониженным содержанием серы. Плазменный нейтрализатор Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Один из альтернативных методов нейтрализации отработавших газов – использование низкотемпературной плазмы. Исследования в Японии, США и в... России привели к созданию экспериментальных образцов оборудования, ос­нованного на плазменных технологиях. Что такое низкотемпературная плазма? Она состоит из положительно заряженных ионов и отрицательно заряженных электронов, получен­ных в специальных устройствах при различных видах импульсных высоковольтных электрических разрядов (коронный, барьерный и др.), а также из нейтральных атомов и молекул. Подпись: Рисунок 15 – Схема плаз-менного нейтра¬лизатора: 
1 – узел подвода от¬работавших газов;
2 – кварцевая трубка (ди-электрик);
3 – центральный электрод; 
4 – внешний элек¬трод.

Принципиальная схема одного из вариантов разрядного устройства показана на рис.15. Оно включает узел подвода отработавшего газа и масла 1, кварцевую стеклянную или керамиче­скую трубку 2, используемую в качестве ди­электрического барьера, и два электрода – центральный 3 и внешний 4 – в виде металличе­ской сетки из нержавеющей стали. В разрядное устройство подается ток от источника, форми­рующего импульс напряжения длительностью 250–350 мкс. Барьерный разряд возникает при элек­трическом напряжении 0,5–35 кВ и частоте сле­дования импульсов 50–2000 Гц. Как происходит процесс нейтрализации га­зов в системе и очистка их от сажи? Отрабо­тавшие газы дизеля направляются в плазмохими­ческий реактор, предварительно пройдя сушку во влагоотделителе. В плазмохимическом реак­торе к этим газам "подмешивают" масло. Под действием электриче­ского разряда в трубках разрядного устройства частички сажи ак­тивно абсорбируют масло на своей поверхности. Для удаления сажи, частички которой находятся как бы в масляном коконе, используется маслоотделитель. Сажа собирается в специальный контейнер, а масло после дополнительной очистки в фильтре продолжает циркулировать по замкнутому контуру. Таким образом, удается обеспечить очень высо­кую эффективность поглощения частичек сажи – до 100% во всем диа­пазоне оборотов дизеля. Из маслоотделителя часть отработавших га­зов можно направить во впускной коллектор дизеля (рециркуляция). Это снижает содержание оксидов азота в выхлопе. Физическая и химическая сущность явлений, происходящих под действием барьерного разряда в плазмохимическом реакторе, изучена пока недостаточно. Однако упрощенно процесс можно представить сле­дующим образом. При подаче напряжения в электроразрядное устрой­ство в нем создается неравновесная слабоионизированная низкотемпе­ратурная плазма, которая воздействует на отработавшие газы. В ре­зультате многостадийных химических реакций оксиды азота, серы и углерода разлагаются на нетоксичные молекулы кислорода, азота, серы и углерода. Одновременно происходит конверсия (превращение) оксида азота в его диоксид, который связывается радикалом ОН в азотную кислоту в виде аэрозоля. Аналогичные реакции протекают с диоксидом серы и оксидом углерода, приводя к образованию аэрозо­лей. Аэрозоли улавливают в достаточно простых электрофильтрах, обеспечивающих степень очистки до 98–99%. Судя по лаконичным сообщениям зарубежной печати, в Японии про­ходит испытания микроавтобус, на котором установлен дизельный дви­гатель "Ниссан-LD 20" мощностью 48,5 кВт/66 л. с., оборудованный нейтрализатором с плазмохимическим реактором. По предварительным расчетам, плазменная очистка обойдется в 1,5–2 раза дешевле, чем в существующих многокомпонентных устройст­вах. Не требуется использовать благородные металлы, значительно увеличивается ресурс систем нейтрализации, сокращается время на их техническое обслуживание. Однако к промышленному выпуску плазмохи­мических реакторов (а значит, их широкому использованию) можно бу­дет перейти, когда удастся сократить затраты мощности на электро­питание реактора. В опытных и экспериментальных системах они дос­тигают 4–5% и более от мощности дизеля. Обратная связь дизеля Подпись: Рисунок 16 – Обратная связь дизеля Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Компания Bosch, которая в 1976 году представила миру свой пер­вый лямбда-зонд для бензиновых двигателей, недавно создала анало­гичный узел и для дизельных моторов. Напомним, лямбда-зонд – это датчик, измеряющий содержание кислорода в отработавших газах авто­мобиля. Его внедрение позволяет оптимизировать топливоподачу в ци­линдры, благодаря чему снижается токсичность отработавших газов и уменьшается расход топлива, увеличиваются мощность и крутящий мо­мент мотора, а также улучшаются его пусковые характеристики. Кроме того, лямбда-зонд вместе с электронной системой впрыска обеспечивают работу каталитического нейтрализатора отработавших га­зов, который выполняет свою функцию только при четком соблюдении пропорций состава топливовоздушной смеси. Сегодня, когда системы питания дизелей управляются электрони­кой, а их механические ТНВД остались в прошлом, лямбда-зонд пришел на службу и этим моторам. Получая данные о количестве кислорода в выхлопе, электронные «мозги» современных дизелей корректируют ра­боту системы рециркуляции отработавших газов, определяют оптималь­ное время впрыска топлива и давление наддува (рис.16). Системы пи­тания с лямбда-зондом особенно эффективны в режиме полных нагрузок, когда увеличивается склонность к дымообразованию. «Бошевский» дат­чик кислорода будет использоваться и в накопительных катализаторах для измерения содержания окисей азота (NOX). Планируется, что уже к концу этого года «лямбда-регулирование» будет внедрено на многих современных дизелях. Система SCR Подпись: Рисунок 17 – Система SCR Реферат: Системы нейтрализации отработавших газов в выпускной системе ДВС Совсем скоро, в октябре 2005 года, в странах Евросоюза для ав­томобилей начнут действовать более строгие экологические нормы Евро 4, которые сменят ныне действующие Евро 3. И сегодня мировые авто­производители активно работают над тем, чтобы сделать выхлоп двига­телей как можно чище. В то же время необходимо считаться с покупателем, для которого важно, чтобы автомобиль был относительно дешев и прост в эксплуата­ции. Все это требует эффективных и вместе с тем недорогих систем. Специалисты DaimlerChrysler создали одну из них – SCR (Selective Catalytic Reduction, что можно перевести как «селектив­ный каталитический преобразователь»). Принцип действия системы SCR (рис.17) заключается в химической реакции аммиака с окисью азота выхлопных газов, в результате кото­рой образуются безвредный азот и водяной пар. Здесь, правда, возникает один вопрос: а как перевозить на ав­томобиле аммиак – довольно токсичное вещество? Известный концерн Total в свое время создал безопасный заменитель аммиака, разрабо­танный на водной основе и соответствующий стандартам DIN 70070. Сегодня он широко применяется в сельском хозяйстве, текстильной промышленности, а также при изготовлении косметики и парфюмерии. Данная жидкость – совершенно не токсичная, без цвета и запаха – в «автомобильном» исполнении называется AdBlue. Селективный преобразователь состоит из двух основных узлов: непосредственно каталитического нейтрализатора с сотовой структу­рой, вмонтированного в глушитель автомобиля, и дополнительного бака под аммиачный заменитель AdBlue. Так что установка системы SCR на автомобили с моторами Евро 3 не потребует кардинального из­менения их конструкции. Средний расход «голубой» жидкости – около 6% от потребляемого автомобилем дизтоплива: например, для магистрального тягача он со­ставляет около 2 л на 100 км. Таким образом, 100-литрового бака с AdBlue хватит на 5000 км пути. Двигатель оснащается дополнительным модулем, совмещенным с электронной системой управления мотором, который точно дозирует количество жидкости AdBlue, подаваемой в выпускной коллектор. Но это еще не все. Очень важно, что моторы с системой SCR су­щественно экономичнее: например, на дальнобойных грузовиках расхо­дуется на 30% меньше топлива. А чем выше экономия – тем меньше со­держание вредных веществ в выхлопных газах. Работы над технологией очистки SCR были начаты еще в 90-е гг. Сегодня система практически готова к серийному производству. Осна­щать грузовики и автобусы Mercedes-Benz системой SCR должны начать в I-м полугодии 2005 года, с тем, чтобы к октябрю 2006 года – пре­дельному сроку перехода на Евро 4 – все вышеуказанные машины марки имели селективный преобразователь выхлопных газов. После небольшой модернизации системы SCR оснащенные ею дизельные моторы будут со­ответствовать экологическим нормам Евро 5, введение которых наме­чено на октябрь 2008 года. Однако нужно решить еще одну важную проблему – создать раз­ветвленную сеть специальных АЗС, на которых можно будет заправ­ляться «голубым» топливом AdBlue. Концерн Total и другие произво­дители уже активно работают над этим. Результат не заставил себя долго ждать: 26 ноября 2003 года в Штутгарте была торжественно от­крыта первая автозаправочная станция AdBlue. Пока на ней будут за­правляться только проходящие испытания с системой SCR автомобили Mercedes-Benz. Заключение Увы, нам пока не до таких нюансов, как токообогрев нейтрализа­торов или индивидуальный контроль сгорания с помощью специальных датчиков в каждом из цилиндров. Россия по уровню автомобильной техники находится сейчас на пороге первой фазы эры нейтрализации — нам надо хотя бы внедрить нейтрализаторы на отечественные автомо­били. Как это было сделано 30 лет назад в Америке и Японии, при­дется правительственными решениями "закрутить гайки" всем без ис­ключения автозаводам и принудить их к выпуску автомобилей, отве­чающих реально выполнимым экологическим требованиям. Правда, от этого немедленно пострадаем мы, покупатели, — ведь автомобили с впрыском и нейтрализатором немедленно станут дороже! А еще надо обязательно решить проблему с этилированным и не­чистым, с большим количеством вредных примесей, бензином — иначе нейтрализаторы будут очень быстро терять свои способности. И пере­оборудование для этой цели нефтеперерабатывающих заводов по всей стране — это тоже вопрос государственного уровня. Помимо этого, есть еще масса проблем. Оборудовать ли нейтрали­заторами те автомобили, что уже выпущены? В Соединенных Штатах, например, разрешено эксплуатировать старые карбюраторные машины — это позволяет высокая скорость обновления автопарка. В Германии это тоже разрешено, но владельцы машин без нейтрализаторов платят больший налог. И стремятся от них побыстрее избавиться. У нас же автомобиль служит до тех пор, пока не сгниет второй кузов и не застучит после четвертой переборки мотор. А как будут обра­щаться с нейтрализаторами гаражные умельцы, уверенные в том, что "катализаторы" сильно ухудшают динамику и экономичность? Будут пробивать их ломом или вырезать из выпускного тракта? Словом, пока у внедрения нейтрализаторов в России больше врагов, нежели сторонников. Но — "иного нет у нас пути"! ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА: 1. Аркадий Алексеев, Михаил Козлов. «Экологический триптих». «За рулем» №6, 1998 2. Леонид Голованов. «Дышать! Лучше поздно, чем никогда». «Авто­ревю» №1, 1998 3. Алексей Воробьев-Обухов. «Освежить дыхание». «За рулем» №12, 2000 4. Юрий Дацик. «Дизельный лямбда-зонд». «Автоцентр» №47, 2002 5. Алексей Воробьев-Обухов. «Задержать и уничтожить». «За ру­лем» № 12, 2003 6. Юрий Гоголев. «Будут сверхчистые Mercedes». «Автоцентр» №6, 2004 7. Алексей Воробьев-Обухов, Витольд Стрелков. «Плазматрон- нейтра­лизатор». «За рулем» №3, 2001 8. Владимир Корницкий. «Катализаторы с обратной связью». «Авто­центр» №49, 2002 9. Алексей Воробьев-Обухов. «Датчик кислорода на дизеле». «За ру­лем» №9, 2002 10. Юрий Макаров. «Нейтрализатор или наше будущее?». «За рулем» №7, 1997 11. Михаил Гзовский. «Твердый курс ЕВРО». «За рулем» №5, 2002 12. Сергей Мишин. «Дышите глубже – мы в Европе». «За рулем» №11, 2000 13. Игорь Мельников. «Не пора ли очиститься?» «Автопрофи» №23, 2003 14. Оксана Сердюк. «Экология и автомобилестроение». «Автостан­дарт» №4, 2004 15. Николай Казаков, Ирина Масленникова. «Экологическая безопас­ность транспорта». «Автобизнесмаркет» №14, 2004


© 2007
Использовании материалов
запрещено.