РУБРИКИ |
Анализ управленческих решений |
РЕКЛАМА |
|
Анализ управленческих решенийАнализ управленческих решенийВ условиях рыночной экономикистепень неопределенности экономического поведения субектов рынка достаточно высока . Всвязи с этим большое практическое значение приобретают методы перспективного анализа , когда нужно принимать управленческие решения, оценивая возможные ситуации и делая выбор из нескольких альтернативных вариантов . Теоритически существует четыре типа ситуаций , в которых необходимо проводить анализ и принимать управленческие решения , в том числе и на уровне предприятия : в условиях определенности , риска , неопределенности , конфликта . Рассмотрим каждый из этих случаев . 1. Анализ и принятие управленческих решений в условиях определенности . Это самый простой случай : известно аоличество возможных ситуаций (вариантов) и их исходы . Нужно аыбрать один из возможных вариантов . Степень сложности процедуры выбора в данном случае определяется лишь количеством альтернативных вариантов . Рассмотрим две возможные ситуации : а) Имеется два возможных варианта ; n=2 В данном случае аналитик должен выбрать (или рекомендовать к выбору) один из двух возможных вариантов . Последовательность действий здесь следующая : . определяется критерий по которому будет делаться выбор ; . методом “ прямого счета ” исчисляются значения критерия для сравниваемых вариантов ; . вариант с лучшим значением критерия рекомендуется к отбору . Возможны различные методы решения этой задачи . Как правило они подразделяются на две группы : 1. методы основанные на дисконтированных оценках ; 2. методы , основанные на учетных оценках . Первая группа методов основывается на следующей идее . Денежные доходы , поступающие на предприятие в различные моменты времени , не должны суммироваться непосредственно ; можно суммировать лишь элементы приведенного потока . Если обозначить F1,F2 ,....,Fn прогно коэфициент дисконтирования зируемый денежный поток по годам , то i-й элемент приведенного денежного потока Рi рассчитывается по формуле : Pi = Fi / ( 1+ r ) i где r- коэфициент дисконтирования. Назначение коэфициента дисконтирования состоит во временной упорядоченности будующих денежных поступлений ( доходов ) и приведении их к текущему моменту времени . Экономический смысл этого представления в следующем : значимость прогнозируемой величины денежных поступлений через i лет ( Fi ) с позиции текущего момента будет меньше или равна Pi . Это означает так же , что для инвестора сумма Pi в данный момент времени и сумма Fi через i лет одинаковы по своей ценности . Используя эту формулу , можно приводить в сопоставимый вид оценку будующих доходов , ожидаемых к поступлению в течении ряда лет . В этом случае коэфициент дисконтирования численно равен процентной ставке , устанавливаемой инвестором , т.е. тому относительному размеру дохода , который инвестор хочет или может получить на инвестируемый им капитал . Итак последовательность действий аналитика такова ( расчеты выполняются для каждого альтернативного варианта ) : . расчитывается величина требуемых инвестиций (экспертная оценка ) , IC ; . оценивается прибыль ( денежные поступления ) по годам Fi ; . устанавливается значение коэфициента дисконтирования , r ; . определяются элементы приведенного потока , Pi ; . расчитывается чистый приведенный эффект ( NPV ) по формуле: NPV= E Pi - IC . сравниваются значения NPV ; . предпочтение отдается тому варианту , который имеет больший NPV ( отрицательное значение NPV свидетельствует об экономической нецелесообразности данного варианта ) . Вторая группа методов продолжает использование в расчетах прогнозных значений F . Один из самых простых методов этой группы - расчет срока окупаемости инвестиции .Последовательность действий аналитика в этом случае такова : . расчитывается величина требуемых инвестиций , IC ; . оценивается прибыль ( денежные поступления ) по годам , Fi ; . выбирается тот вариант , кумулятивная прибыль по которому за меньшее число лет окупит сделанные инвестиции . б) Число альтернативных вариантов больше двух . n > 2 Процедурная сторона анализа существенно усложняется из-за множественности вариантов , техника “ прямого счета “ в этом случае практически не применима . Наиболее удобный вычислительный аппарат - методы оптимального программирования ( в данном случае этот термин означает “ планирование ” ) . Этих методов много ( линейное , нелинейное, динамическое и пр. ), но на практике в экономических исследованиях относительную известность получило лишь линейное программирование. В частности рассмотрим транспортную задачу как пример выбора оптимального варианта из набора альтернативных . Суть задачи состоит в следующем . Имеется n пунктов производства некоторой продукции ( а1,а2,...,аn ) и k пунктов ее потребления ( b1,b2,....,bk ), где ai - обьем выпуска продукции i - го пункта производства , bj - обьем потребления j - го пункта потребления . Рассматривается наиболее простая , так называемая “закрытая задача ” , когда суммарные обьемы производства и потребления равны . Пусть cij - затраты на перевозку еденицы продукции . Требуется найти наиболее рациональную схему прикрепления поставщиков к потребителям , минимизирующую суммарные затраты по транспортировке продукции . Очевидно , что число альтернативных вариантов сдесь может быть очень большим , что исключает применение метода “ прямого счета ” . Итак необходимо решить следующую задачу : E E Cg Xg -> min E Xg = bj E Xg = bj Xg >= 0 Известны различные способы решения этой задачи -распределительный метод потенциалов и др . Как правило для расчетов применяется ЭВМ . При проведении анализа в условиях определенности могут успешно применяться методы машинной имитации , предполагающие множественные расчеты на ЭВМ . В этом случае строится имитационная модель обьекта или процесса ( компьютерная программа ) , содержащая b-е число факторов и переменных , значения которых в разных комбинациях подвергается варьированию . Таким образом машинная имитация - это эксперимент , но не в реальных , а в искусственных условиях . По результатам этого эксперимента отбирается один или несколько вариантов , являющихся базовыми для принятия окончательного решения на основе дополнительных формальных и неформальных критериев . 2 . Анализ и принятие управленческих решений в условиях риска . Эта ситуация встречается на практике наиболее часто . Здесь пользуются вероятностным подходом , предполагающим прогнозирование возможных исходов и присвоение им вероятностей . При этом пользуются: а) известными , типовыми ситуациями ( типа - вероятность появления герба при бросании монеты равна 0.5 ) ; б) предыдущими распределениями вероятностей ( например , из выборочных обследований или статистики предшествующих переудов известна вероятность появления бракованной детали ) ; в) субьективными оценками ,сделанными аналитиком самостоятельно либо с привлечением группы экспертов . Последовательность действий аналитика в этом случае такова : прогнозируются возможные исходы Ak , k = 1 ,2 ,....., n ; каждому исходу присваивается соответствующая вероятность pk , причем Е рк = 1 выбирается критерий(например максимизация математического ожидания прибыли ) ; выбирается вариант , удовлетворяющий выбранному критерию . Пример : имеются два обьекта инвестирования с одинаковой прогнозной суммой требуемых капитальных вложений . Величина планируемого дохода в каждом случае не определенна и приведена в виде распределения вероятностей : | Проект А |Проект В | |Прибыль |Вероятность |Прибыль |Вероятность | |3000 |0. 10 |2000 | 0 . 10 | |3500 |0 . 20 |3000 |0 . 20 | |4000 |0 . 40 |4000 |0 . 35 | |4500 |0 . 20 |5000 |0 . 25 | |5000 |0 . 10 |8000 |0 . 10 | Тогда математическое ожидание дохода для рассматриваемых проектов будет соответственно равно : У ( Да ) = 0 . 10 * 3000 + ......+ 0 . 10 * 5000 = 4000 У ( Дб ) = 0 . 10 * 2000 +.......+ 0 . 10 * 8000 = 4250 Таким образом проект Б более предпочтителен . Следует , правда , отметить , что этот проект является и относительно более рискованным , поскольку имеет большую вариацию по сравнению с проектом А ( размах вариации проекта А - 2000 , проекта Б - 6000 ) . В более сложных ситуациях в анализе используют так называемый метод построения дерева решений . Логику этого метода рассмотрим на примере . Пример : управляющему нужно принять решение о целесообразности приобретения станка М1 либо станка М2 . Станок М2 более экономичен , что обеспечивает больший доход на еденицу продукции, вместе с тем он более дорогой и требует относительно больших накладных расходов : | |Постоянные расходы |Операционный доход на | | | |еденицу продукции | |Станок М1 |15000 |20 | |Станок М2 |21000 |24 | Процесс принятия решения может быть выполнен в несколько этапов : Этап 1 . Определение цели . В качестве критерия выбирается максимизация математического ожидания прибыли . Этап 2 . Определение набора возможных действий для рассмотрения и анализа ( контролируются лицом , принимающим решение) Управляющий может выбрать один из двух вариантов : а1 = { покупка станка М1 } а2 = { покупка станка М2 } Этап 3 . Оценка возможных исходов и их вероятностей ( носят случайный характер ) . Управляющий оценивает возможные варианты годового спроса на продукцию и соответствующие им вероятности следующим образом : х1 = 1200 едениц с вероятностью 0 . 4 х2 = 2000 едениц с вероятностью 0 . 6 Этап 4 . Оценка математического ожидания возможного дохода : 1200 20 * 1200 - 15000 = 9000 М 0.4 0.6 2000 20 * 2000 - 15000 = 25000 а1 а2 1200 24 * 1200 - 21000 = 7800 0.4 М2 0.6 2000 24 * 2000 - 21000 = 27000 Е ( Да ) = 9000 * 0 . 4 + 25000 * 0 . 6 = 18600 Е ( Дб ) = 7800 * 0 . 4 + 27000 * 0 . 6 = 19320 Таким образом , вариант с приобретением станка М2 экономически более целесообразен . 3 . Анализ и принятие управленческих решений в условиях неопределенности . Эта ситуация разработана в теории , однако на практике формализованные алгоритмыанализа применяются достаточно редко . Основная трудность здесь состоит в том , что невозможно оценить вероятности исходов . Основной критерий - максимизация прибыли - здесь не срабатывает , поэтому применяют другие критерии : максимин ( максимизация минимальной прибыли ) минимакс ( минимизация максимальных потерь ) максимакс ( максимизация максимальной прибыли ) и др. 4 . Анализ и принятие управленческих решений в условиях конфликта . Наиболее сложный и мало разработанный с практической точки зрения анализ . Подобные ситуации рассматриваются в теории игр . Безусловно на практике эта и предыдущая ситуации встречаются достаточно часто . В таких случаях их пытаются свести к одной из первых двух ситуаций либо используют для принятия решения неформализованные методы . Оценки , полученные в результате применения формализованных методов , являются лишь базой для принятия окончательного решения ; при этом могут приниматься во внимание дополнительные критерии , в том числе и неформального характера . |
|
© 2007 |
|