РУБРИКИ |
Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле |
РЕКЛАМА |
|
Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам ДирихлеОб интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам Дирихле| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |на тему: | | | |"Об интегральных формулах Вилля-Шварца | |для трехсвязных областей и ее применение | |к краевым задачам Дирихле". | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Оглавление. Введение. §1. О задачах Дирихле. а) Задача Дирихле для круга – Задача Пуассона (классическая формулировка). б) Обобщенная задача Дирихле в) Видоизмененная задача Дирихле. г) Классическая задача Дирихле для многосвязных областей. д) Общая формулировка задачи Дирихле. е) Задача Неймана. §2. О задачах Шварца-Пуассона. а) Интеграл Шварца для круга. б) Интегральная формула Пуассона. в) Интеграл Пуассона для внешности круга. г) Задача Дирихле-Пуассона для полуплоскости. д) Задача Дирихле для кругового кольца. §3. Интегральная формула Анри Вилля – проблема Дирихле для кругового кольца (1912). а) Преобразование интегральной формулы А.Вилля. б) Функции Вейерштрасса (I(u), [pic](u), [pic](u)). §4. О некоторых изменениях теории конформного отображения к краевым задачам. а) Об структурном классе интегральных представлений. б) О решении задачи Дирихле методом Чизотти для многосвязных областей. в) Интегральная формула Чизотти для заданных областей – решение задачи Дирихле для соответствующих областей. §5. Об интегральных представлениях Пуассона-Дирихле для заданных областей. §6. Интегральная формула Чизотти-Пуассона-Дирихле для конечных трехсвязных областей. Литература. Введение. В данной дипломной работе исследованы некоторые интегральные формулы (классические представления) аналитических и гармонических функций в заданных многосвязных областях. Даны новые методы решения классических краевых задач методом интегральных представлений аналитических функций, используя метод конформного отображения канонической области [pic](z) на соответствующие области G[pic](w). Используя фундаментальные интегральные формулы для круга и кругового кольца, автор обобщает задачи Пуассона, Дирихле, Дини, Шварца, Кристофеля- Шварца и Чизотти для многосвязных областей. В частности, найдены интегральные формулы для эксцентрического кругового кольца, двух-трехсвязных областей. И нашли применение их к решению классических краевых задач типа Дирихле-Неймана. Целью нашего исследования в предлагаемой работе являются: 1. Разобраться в вышеуказанных (непростых) известных классических задачах типа Шварца, Дирихле, Пуассона и Чизотти [1] – [7]. 2. Творчески изучая и классифицируя их, найти обобщение и решение этих задач для конкретных многосвязных областей (см. оглавление). Данная работа состоит из введения и 6 параграфов. В введении обосновывается постановка задачи, показывается актуальность рассматриваемой темы дипломной работы, дается краткий анализ и перечень работ по данному исследованию (1 – 24). Параграфы (§1, §2) не только вспомогательные материалы, необходимые для понимания основного содержания дипломной темы, но и являются справочной классификацией о задачах Дирихле (классическая, обобщенная, общая, видоизмененная) для любой связности заданной области G[pic]= G[pic](w) и задачах Шварца-Пуассона (для круга, кругового кольца, внешности кругов, для полуплоскости). В §3 интегральная формула Анри Вилля – проблема Дирихле для кругового кольца в форме Ахиезера преобразована и получена новая компактная, контурная, структурная формула А.Вилля для кругового кольца. Здесь же, ввиду важности трех функций I(u), [pic](u) и [pic](u) для практического приложения и простоты реализации на ЭВМ, мы рассмотрели все варианты представления рядов данных функций (37) – (48) по справочникам [19] – [22] специальных функций (а), б)). Параграфы §4 - §6 – основное содержание самостоятельной работы автора: рассмотрены применение теории комфорного отображения к краевым задачам – решение задачи Дирихле методом Чизотти для заданных областей (§4). В §5 – интегральные представления Пуассона-Дирихле для круга, кругового кольца и, наконец, §6 – интегральная формула Чизотти-Шварца- |
|
© 2007 |
|