РУБРИКИ |
План чтения лекции по учебной дисциплине «Математические методы» |
РЕКЛАМА |
|
План чтения лекции по учебной дисциплине «Математические методы»План чтения лекции по учебной дисциплине «Математические методы»Юридический техникум Рассмотрено и одобрено ПЦК г. Кропоткин программирования Председатель ПЦК Покалицына О.В. План чтения лекции по учебной дисциплине «Математические методы» Раздел № 2. Линейное программирование. Тема № 2.2. Основная задача линейного программирования. Занятие № Место проведения: аудитория. Литература: 1. Венцель Е.С. Исследование операций. Задач, принципы, методология. – М.: Наука, 1980. 2. Шелобаев С.И. Математические методы и модели в экономике, финансах, бизнесе. – М.:ЮНИТИДАНА, 2001 Учебные вопросы и расчет времени |№п/п |Учебные вопросы |Время, мин|Методические | | | | |указания | |1. |Основная задача ЛП (ОЗЛП). | | | |2. |Существование решения. | | | Вводная часть. Организационный момент. План занятия. Основные требования. Основная часть. 1. Основная задача ЛП (ОЗЛП). Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛП), которая формируется так: найти неотрицательные значения переменные x1, x2, …, xn, которые удовлетворяли бы условиям – равенствам: a11 x1 + a12 x2 + … +a1n xn = b1, a21 x1 + a22 x2 + … +a2n xn = b2, (6.1.) ……………………………….. am1 x1 +am2 x2 + … +amn xn = bm. и обращали бы в максимум линейную функцию этих переменных: [pic] (6.2.) Случай, когда L надо обратить не в максимум, а в минимум, легко сводится к простому: изменить знак L на обратный (максимизировать не L, а L`=-L). Кроме того, от любых условий – неравенств можно перейти к условиям – равенствам ценой введения некоторых новых «дополнительных» переменных. Пусть требуется найти неотрицательные значения переменных x1,x2,x3, удовлетворяющие ограничениям – неравенствам [pic] (6.3.) [pic] и обращающие в максимум линейную функцию от этих переменных: [pic] (6.4.) Начнём с того, что приведём условия (6.3.) к стандартной форме, так, чтобы знак неравенства был (, а справа стоял нуль. Получим: [pic] (6.5.) [pic] А теперь обозначим левые части неравенств (6.5.) соответственно через y1 и y2: [pic] (6.6.) [pic] Из условий (6.5.) и (6.6.) видно, что новые переменные y1, y2 также должны быть неотрицательными. Какая же теперь перед нами стоит задача? Найти неотрицательные значения переменных x1,x2,x3,y1,y2 такие, чтобы они удовлетворяли условиям – равенствам (6.6.) и обращали в максимум линейную функцию этих переменных (то, что в L не входит дополнительные переменные y1, y2, неважно: можно считать, что они входят, но с нулевыми коэффициентами). Перед нами – основная задача линейного программирования (ОЗЛП). Переход к ней от первоначальной задачи с ограничениями – неравенствами (6.3.) «куплен» ценой увеличения числа переменных на два (число неравенств). 2. Существование решения ОЗЛП и способы его нахождения. Рассмотрим основную задачу линейного программирования (ОЗЛП): найти неотрицательные значения переменных x1, x2, …, xn, удовлетворяющие m условиям – равенствам: a11 x1+a12 x2+…+a1n xn=b1, a21 x1+a22 x2+…+a2n xn=b2, (7.1.) …………………………... am1 x1+am2 x2+…+amn xn=bm и обращающие в максимум линейную функцию этих переменных: [pic] (7.2.) Для простоты предположим, что все условия (7.1.) линейно независимы (r=m), и будем вести рассуждения в этом предположении. Назовём ДОПУСТИМЫМ решением ОЗЛП всякую совокупность неотрицательных значений x1, x2, …, xn, удовлетворяющую условиям (7.1.). ОПТИМАЛЬНЫМ назовём то из допустимых решений, которое обращает в максимум функцию (7.2.). Требуется найти оптимальное решение. Всегда ли эта задача имеет решение? Нет, не всегда. 1. Может оказаться, что уравнения (7.1.) вообще несовместимы (противоречат друг другу). 2. Может оказаться и так, что они совместимы, но не в области неотрицательных решений, т.е. не существует ни одной совокупности чисел x1(0, x2(0, …, xn(0, удовлетворяющей условиям (7.1.). 3. Наконец, может быть и так, что допустимые решения ОЗЛП существуют, но среди них нет оптимального: функция L в области допустимых решений не ограничена сверху. [pic] Чтобы представить себе принципиальную сторону ОЗЛП, обратимся к геометрической интерпретации. Пусть число уравнений m на два меньше числа переменных n (n-m=k=2). Такой частный случай даёт возможность геометрической интерпретации ОЗЛП на плоскости. Мы знаем, что n линейно независимых уравнений (7.1.) всегда можно разрешить относительно каких-то m базисных переменных, выразив их через остальные, свободные, число которых равно n-m=k (в нашем случае k=2). Предположим, что свободные переменные – это x1 и x2 (если это не так, то всегда можно заново перенумеровать переменные), а остальные: x3, x4, …, xn – базисные. Тогда вместо m уравнений (7.1.) мы получим тоже m уравнений, но записанных в другой форме, разрешённых относительно x3, x4, …; x3=a31 x1+a32 x2+(3, x4=a41 x1+a42 x2+(4, (7.3.) …………………… xn=an1 x1+an2 x2+(n. Будем изображать пару значений свободных переменных точкой с координатами x1, x2 (рис. 9.1.). Так как переменные x1, x2 должны быть неотрицательными, то допустимые значения свободных переменных лежат только выше оси Ox1 (на которой x2=0) и правее оси Ox2 (на которой x1=0). Это мы отметим штриховкой, обозначающей «допустимую» сторону каждой оси. Теперь построим на плоскости x1Ox2 область допустимых решений или же убедимся, что её не существует. Базисные переменные x3, x4, …, xn тоже должны быть неотрицательными и удовлетворять уравнениям (7.3.). Каждое такое уравнение ограничивает область допустимых решений. [pic] Действительно, положим в первом уравнении (7.3.) x3=0; получим уравнение прямой линии: [pic] На этой прямой x3=0; по одну сторону от неё x3>0, по другую – x3<0. Отметим штриховкой ту сторону (полуплоскость), где x3>0 (рис. 7.2.). Пусть эта сторона оказалась правее и выше прямой x3=0. Значит, вся область допустимых решений (ОДР) лежит в первом координатном угле, правее и выше прямой x3=0. Аналогично поступим и со всеми остальными условиями (7.3.). Каждое из них изобразится прямой со штриховкой, указывающей «допустимую» полуплоскость, где только и может лежать решение (рис.7.3.). [pic] Таким образом, мы построили n прямых: две оси координат (Ox1 и Ox2) и n-2 прямых x3=0, x4=0, …, xn=0. Каждая из них определяет «допустимую» полуплоскость, где может лежать решение. Часть первого координатного угла, принадлежащая одновременно всем этим полуплоскостям, и есть ОДР. На рис. 7.3. показан случай, когда ОДР существует, т.е. система уравнений (7.3.) имеет неотрицательные решения. Заметим, что этих решений – бесконечное множество, так как любая пара значений свободных переменных, взятая из ОДР, «годится», а из x1 и x2 могут быть определены и базисные переменные. [pic] Может оказаться, что область допустимых решений не существует, и значит, уравнения (7.3.) несовместимы в области неотрицательных значений. Такой случай показан на рис. 7.4., где нет области, лежащей одновременно по |
|
© 2007 |
|