РУБРИКИ

Приближенное решение уравнений

   РЕКЛАМА

Главная

Логика

Логистика

Маркетинг

Масс-медиа и реклама

Математика

Медицина

Международное публичное право

Международное частное право

Международные отношения

История

Искусство

Биология

Медицина

Педагогика

Психология

Авиация и космонавтика

Административное право

Арбитражный процесс

Архитектура

Экологическое право

Экология

Экономика

Экономико-мат. моделирование

Экономическая география

Экономическая теория

Эргономика

Этика

Языковедение

ПОДПИСАТЬСЯ

Рассылка E-mail

ПОИСК

Приближенное решение уравнений

Приближенное решение уравнений

Управление образования администрации г. Норильска средняя школа №36

Научная работа по математике

тема : "Приближенное вычисление корней в уравнениях".

Выполнили: Мамедалиева Ирада и

Павлова Галина

ученицы 11"А" класса

средней школы №36

Научный руководитель:

учитель математики

средней школы № 36

Крайняя В.В..

Норильск 2000 г.

Содержание.

1. Введение.

2. Приближённое решение уравнений :

2.1 Способ хорд (или способ линейной интерполяции).

2. Способ касательных (или способ Ньютона).

3. Комбинированный способ (комбинированное применение способов хорд и

касательных).

3. Заключение.

4. Список литературы.

5. Приложение :

а) рисунок № 1

б) рисунок № 2

в) рисунок № 3

г) рисунок № 4

д) рисунок № 5

е) рисунок № 6

ж) рисунок № 7

Приближённое решение уравнений.

Если квадратные уравнения решали уже древние греки, то способы решения

алгебраических уравнений третьей и четвёртой степени были открыты лишь в

XVI веке. Эти классические способы дают точные значения корней и выражают

их через коэффициенты уравнения при помощи радикалов различных степеней.

Однако эти способы приводят к громоздким вычислениям и поэтому имеют малую

практическую ценность.

В отношении алгебраических уравнений пятой и высших степеней доказано, что

в общем случае их решения не выражаются через коэффициенты при помощи

радикалов. Не выражаются в радикалах, например, корни уже такого простого

по виду уравнения, как:

х^5-4х-2=0

Сказанное, однако, не означает отсутствия в науке методов решения уравнения

высших степеней. Имеется много способов приближенного решения уравнений -

алгебраических и неалгебраических (или, как их называют, трансцендентных),

позволяющих вычислять их корни с любой, заранее заданной степенью точности,

что для практических целей вполне достаточно.

На простейших из таких способов мы и остановимся, причём речь будет идти о

вычислении действительных корней.

Пусть нужно решить уравнение:

f(x)=0

(1)

Если обратиться к рисунку, то каждый корень уравнения (1) представляет

собой абсциссу точки пересечения графика функции y=f(х)

C осью Ох (рисунок №1)

С помощью графика функции или каким-нибудь иным способом обычно удаётся

установить приблизительные значения корней. Это позволяет для каждого корня

получить грубые приближения по недостатку и по избытку. Такого рода грубых

приближений во многих случаях оказывается достаточно, чтобы, отправляясь от

них, получить все значения корня с требуемой точностью. Об этом и пойдёт

речь.

Итак, пусть корень Е уравнения (1) "зажат" между двумя его приближениями а

и b по недостатку и по избытку а< E<b . При этом будем предполагать, что

f(х), f`(х) ,f``(х) непрерывны на отрезке [ а, b ], причём f`(х) и f``(х)

сохраняют знак. Сохранение знака у f`(х) говорит о монотонности f(х) (и,

следовательно, f(a) u f(b) имеют разные знаки). Сохранение же знака у

f``(х) означает, что выпуклость кривой y=f(х) для всех х отрезка [ а, b ]

обращена в одну сторону. На рисунке №2 изображены 4 случая, отвечающих

возложенным комбинациям знаков у f`(х) и f``(х) .

Способ хорд (или способ линейной интерполяции).

Проведём хорду АВ (рисунок№3) и за первое приближённое значение корня

примем абсциссу x1 точки С пересечения хорды с осью Ох.

Уравнение хорды имеет вид:

y-f(a)/f(b)-f(a)=x-a/b-a.

Поэтому в точке С:

-f(a)/f(b)-f(a)= x1-a/b-a

откуда:

x1=a- (b-a)*f(a)/ f(b)-f(a)

Рассмотрение всех четырёх случаев, изображённых на рисунке №2, показывает,

что точка x1 лежит между a и b с той стороны от Е, где f(х) имеет знак,

противоположный знаку f``(х).

Остановим внимание на первом случае: f`(х)>0, f``(х)>0 (рисунок №3), - в

остальных случаях рассуждение вполне аналогично. В этом первом случае x1

лежит между a и Е. С отрезком [x1, b] поступаем так же, как мы поступаем с

отрезком [a, b] (рисунок №4). При этом для нового приближённого значения

корня получаем:

x1 = x2-(b- x1)*f(x1)/f(b)-f(x1)

( в формуле (2) заменяем x1 на x2, а на x1 ); значение x2 оказывается

между x1 и Е. Рассматриваем отрезок [x2, b] и находим новое приближённое

x3, заключённое между x2 и Е и. т. д. В результате получим

последовательность а<x1<x2<x3<…<xn<…<E(3), всё более и более точных

приближённых значений корня, причём хn+1 через xn выражается формулой:

хn+1= xn-(b- xn)*f(xn)/f(b)-f(xn) (4)

Для оценки погрешности соответсвующих приближений воспользуемся формулой

Лагранжа:

f(xn)-f(E)=f`(c)*( xn-E) (xn<c<E)

или, поскольку

f(E)=0: f(xn)=f`(c)( xn-E),

откуда:

xn-Е= f(xn)/ f`(c)

Если обозначить через m наименьшее значение |f`(х)| на рассматриваемом

отрезке, то для оценки погрешности получим формулу:

|xn-E|<|f`( xn)|/m (5)

Эта формула, заметим, совершенно не связана со способом отыскивания величин

xn и, следовательно, приложила к приближённым значениям корня, получаемым

любым методом. Формула (5) позволяет судить о близости xn к Е по величине

значения f(xn). Однако в большинстве случаев она даёт слишком грубую оценку

погрешности, т. е. фактическая ошибка оказывается значительно меньше.

Легко доказать, что последовательность приближений:

x1,x2,x3,…xn,… (6)

для корня Е, получаемых по способу хорд, всегда сходится к Е. Из случая,

рассматривающегося выше, мы видим, что последовательность (6) - монотонная

и ограниченная. Поэтому она имеет некоторый предел n<E. Переходя к пределу

в равенстве (4), в силу непрерывности f(x) получим:

n=n-(b-n)f(n)/f(b)-f(n)

откуда F(n)=0. Так как f(x) возрастает на отрезке [a, b], то уравнение

f(х)=0 имеет единственный корень, и этим корнем по условию является Е.

Поэтому n=E, т. е. lim xn=E.

Пример № 1. Методом хорд найдём положительный корень уравнения

х^4-2х-4=0

с точностью до 0,01.

Решение:

Положительный корень будет находиться в промежудке (1; 1,7), так как f(1)=-

5<0, а f(1,7)=0,952 >0

Найдём первое приближённое значение корня по формуле (2):

х1=1-91,7-1)* f(1)/ f(1,7)- f(1)=1,588;

так как f(1,588)=-0,817<0, то, применяя вторично способ хорд к промежутку

(1,588; 1,7), найдём второе приближённое значение корня:

х2= 1,588-(1,7-1,588) f(1,588)/ f(1,7)- f(1,588)=1,639;

f(1,639)=-0,051<0.

Теперь найдём третье приближённое значение:

х3=1,639-(1,7-1,639) f(1,639)/ f(1,7)- f(1,639)=1,642;

f(1,642)=-0,016<0.

Теперь найдём четвёртое приближённое значение:

х4=1,642-(1,7-1,642) f(1,642)/ f(1,7)- f(1,642)=1,643;

f(1,643)=0,004>0

Следовательно, искомый корень с точностью до 0,01 равен 1,64.

2.2 Способ касательных (или способ Ньютона).

В том из концов дуги АВ (рисунок №5), в котором знаки f(х) и f``(х)

совпадают, проводим касательную и за первое приближённое значение корня

принимаем абсциссу х1` точки Д пересечения этой касательной с осью Ох.

Обратимся вновь к первому случаю, соответствующему первому рисунку №2

(f`(x)>0, f``(x)>0), - в остальных случаях рассуждают опять-таки

аналогично. Уравнение интересующей нас касательной имеет вид:

y-f(b)=f`(b)(x-b),

и поэтому в точке Д:

-f(b)=f`(b)(x1`-b),

откуда:

x1`=b-f(b)/f`(b).

Из рисунка видно, что x1` лежит между Е и b. С отрезком [a, x1`] поступаем

так же, как с отрезком [a, b] ( рисунок №5), и в результате для нового

приближённого значения корня получим:

х2` = x1`- f( x1`)/ f`( x1`).

Значение х2` оказывается между Е и x1`. Рассматриваем отрезок [a, х2`] и

находим новое приближение х3` и т. д. В результате получим

последовательность:

b> x1`> х2`> х3`>…>xn`>…>E (7)

все более точных приближённых значений корня, причём:

xn+1`= xn`- f(xn`)/ f`( xn`) (8)

Эта формула справедлива для всех четырёх случаев, изображённых на рисунке

32. Для оценки погрешностей полученных приближений можно опять

воспользоваться формулой (5), как и в первом случае, легко устанавливается

сходимость последовальности x1`, х2`, х3`,…,xn`,… к значению Е

Пример №2. Методом касательных найдём положительный корень уравнения

x^4-2x-4=0

с точностью до 0,01.

Решение:

В этом уравнении f(х)=х^4-2x-4, f`(х)=4х^3-2,а f``(х)=12x^2.Так как f(х) и

f``(х) при х0 = 1,7 имеют один и тот же знак, а именно:

f(1,7)=0,952>0 и f``(1,7)>0, то применяем формулу:

x1`= х0- f(х0)/ f`( х0), где f`(1,7)=4*1,7^3-2=17,652. Тогда

x1=1,7- 0,952/17,652=1,646.

Применяем второй раз способ касательных:

х2= x1- f(x1)/ f` (x1), где f(x1)= f(1,646)=0,048, f` (1,646) =15,838;

x^2=1,646-0,048/15,838=1,643;

f(1,643)=0,004, f` (1,643)=15,740;

х3=1,643-0,004/15,740=1,6427.

Следовательно, искомый корень с точностью до 0,01 равен 1,64.

2.3 Комбинированный способ

(комбинированное применение способов хорд и касательных).

Этот способ состоит в одновременном использовании способов хорд и

касательных. Остановим своё внимание опять на случае, отвечающем первому

рисунку №2. Значения x1 и x1`, вычисляем по прежним формулам, т. е.

принимаем:

x1=a-(b-a)f(a)/f(b)-f(a),

(10)

x1`=b-f(b)/f`(b), причём: x1<E< x1`

Теперь вместо отрезка [a, b]рассматриваем отрезок [x1,x1`] (рисунок №6).

Это даёт:

х2= x1-( x1`- x1)f(x1)/f(x1`)-f(x1),

х2`=x1`- f(x1)/f(x1`),причём х2<E< х2`

Далее рассматриваем отрезок [х2, х2`] и т. д.

В результате получаем:

хn<E< xn`,

хn+1= xn-( xn`- xn)f(xn)/f(xn`)-f(xn), а хn+1`= xn`-f(xn`)/f`( xn`)

(11)

В данном случае мы приближаемся к корню сразу с обеих сторон (рисунок №6),

а не с одной стороны, как в способе хорд и способе касательных. Поэтому

разность xn`- xn позволяет судить о качестве полученных приближений, и

никакие формулы для оценки здесь не нужны.

Пример№3. Комбинированным способом способом вычислим с точностью до 0,0005

положительные корни уравнения

X^5-x-0,2=0

Решение: График многочлена f(x)= X^5-x-0,2 для х>0 изображён на рисунке

№7. Из этого рисунка видно, что уравнение имеет положительный единственный

корень, лежащий на отрезке 1<x<1,1. Поскольку f`(x)=5x^4-1, f``(x)=20x^3,

постольку на интересующем нас отрезке f`(x0>0,f``(x)>0 т. е. знак

производных сохраняется. Применяем комбинированный способ:

f(a)=f(1)=-0,2, f(b)=f(1,1)=0,31051, f`(b)=f`(1,1)=6,3205.

Формулы (10) дают:

x1=1+0,1*0,2/0,51051=1,039,

x1`=1,1-0,31051/6,3205=1,051

При этом x1`- x1=0,012, т. е. точность недостаточна. Совершаем второй шаг:

f(1,039)=-0,0282;f(1,051)=0,0313,f`(1,051)=5,1005.

По формулам(11):

х2=1,039=0,012*0,0282/0,0595=1,04469,х2`=1,051-0,0313/5,1005=1,04487.

При этом х2`- х2=0,00018, т. е. точность достаточна. Таким образом:

1,04469 <E< 1,04487

Любое из фигурирующих здесь чисел можно взять за приближённое значение Е,

причём ошибка не превзойдёт 0,00018.


© 2007
Использовании материалов
запрещено.