РУБРИКИ |
Приложения производной |
РЕКЛАМА |
|
Приложения производнойПриложения производнойЛицей информационных технологий Реферат Производная и ее приложения Выполнил: ученик 11А класса Новиков А. Проверила: Шекера Г.В. г.Хабаровск 2004 Содержание Введение……………………………………………………………………………………….…3 1. Понятие производной……………………………………………………....………………....4 2. Геометрический смысл производной…………………….………………….......……..4 3. Физический смысл производной……………………………………………………….…….5 4. Правила дифференцирования………………………………………………………….……..6 5. Производные высших порядков……………………………………………………….……..7 6. Изучение функции с помощью производной 6.1.Возрастание и убывание функции. Экстремум функции……………………………..8 6.2.Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции………………..…………………...…….11 6.3 .Правило нахождения экстремума………………………………………………….....12 6.4.Точка перегиба графика функции………………………………………………...…...12 6.5.Общая схема исследования функции и построение ее графика……………………..15 6.5. Касательная и нормаль к плоской кривой…………………………..………………..15 7.Экономическое приложение производной. 7.1.Экономическая интерпретация производной………………………………...……….16 7.2. Применение производной в экономической теории...………………………..……..19 7.3. Использование производной для решения задач по экономической теории….…...21 8. Применение производной в физике…………………………………………………….…..23 9. Применение производной в алгебре 9.1. Применение производной к доказательству неравенств…………………………....25 9.2. Применение производной в доказательстве тождеств………………………….…...28 9.3. Применение производной для упрощения алгебраических и тригонометрических выражений……………………………………………….……29 9.4.Разложение выражения на множители с помощью производной…………………...30 9.5. Применение производной в вопросах существования корней уравнений………....31 Заключение……………………………………………………………………………………...32 Список литературы……………………………………………………………………………..33 Введение Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно. Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики. Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу а[pic]А поставлен в соответствие определенный элемент в[pic]В. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: [pic]а[pic]А[pic]!b[pic]B. Под элементами множеств А и В понимаются при этом элементы произвольной природы. В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней. Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др. Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин. Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными. В своей же работе я хочу подробнее остановится на приложениях производной. 1. Понятие производной При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом [pic] Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ' (x), называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение ? x и определяем соответствующее приращение функции ? y = f(x+? x) -f(x); 2) составляем отношение[pic] 3) считая x постоянным, а ? x (0, находим[pic], который обозначаем через f ' (x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу. Определение: Производной y ' =f ' (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом, [pic], или [pic] Заметим, что если при некотором значении x, например при x=a, отношение [pic]при ? x(0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a. 2. Геометрический смысл производной. Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x0 [pic] Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x0, f (х0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ?АВС: АС = ?x; ВС =?у; tg?=?y/?x . Так как АС || Ox, то (ALO = (BAC = ? (как соответственные при параллельных). Но (ALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tg? = k - угловой коэффициент прямой АВ. Теперь будем уменьшать ?х, т.е. ?х> 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ?х> 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А. Если перейти к пределу при ?х > 0 в равенстве tg? =?y/?x, то получим[pic] или tg( =f '(x0), так как [pic] (-угол наклона касательной к положительному направлению оси Ох [pic], по определению производной. Но tg( = k - угловой коэффициент касательной, значит, k = tg( = f '(x0). Итак, геометрический смысл производной заключается в следующем: Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0. 3. Физический смысл производной. Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ?t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е. Vср = ?x/?t. Перейдем к пределу в последнем равенстве при ?t > 0. lim Vср (t) = ((t0) - мгновенная скорость в момент времени t0, ?t > 0. а lim = ?x/?t = x'(t0) (по определению производной). Итак, ((t) =x'(t). Физический смысл производной заключается в следующем: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0 Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени. ((t) = x'(t) - скорость, a(f) = ('(t) - ускорение, или a(t) = x"(t). Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении: ? = ?(t) - изменение угла от времени, ? = ?'(t) - угловая скорость, ? = ?'(t) - угловое ускорение, или ? = ?"(t). Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня: m = m(х) - масса, x ( [0; l], l - длина стержня, р = m'(х) - линейная плотность. С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ?2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ?2x(t) = 0, где ? = ?k/?m частота колебаний (l/c), k - жесткость пружины (H/m). Уравнение вида у" + ?2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция у = Asin(?t + ?0) или у = Acos(?t + ?0), где А - амплитуда колебаний, ? - циклическая частота, ?0 - начальная фаза. 4. Правила дифференцирования |(C)’= 0 С=const |[pic] | |[pic] |[pic] | |(cos x)'=-sin x |[pic] | |(sin x)'=cos x |[pic] | |(tg x)'=[pic] |(ах)'=аx ln a | |(ctg x)'=-[pic] |(ех)'=ex | |[pic] | | [pic] [pic] [pic] [pic] Производная степенно-показательной функции [pic], где [pic]. [pic]. Логарифмическое дифференцирование. Пусть дана функция [pic]. При этом предполагается, что функция [pic] не обращается в нуль в точке [pic]. Покажем один из способов нахождения производной функции [pic], если [pic] очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно. Так как по первоначальному предположению [pic] не равна нулю в точке, где ищется ее производная, то найдем новую функцию [pic] и вычислим ее производную [pic] (1) Отношение [pic] называется логарифмической производной функции [pic]. Из формулы (1) получаем [pic]. Или [pic] Формула (2) дает простой способ нахождения производной функции [pic]. 5. Производные высших порядков Ясно, что производная[pic]функции y =f (x) есть также функция от x: [pic] Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением [pic]можем написать [pic] Очень удобно пользоваться также обозначением [pic], указывающим, что функция y=f(x) была продифференцирована по x два раза. Производная второй производной, т.е. функции y''=f '' (x) , называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами [pic]. Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами [pic] Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции. Например: 1) [pic]; [pic]; [pic]; ...; [pic]; [pic]. Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной. Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков. 6. Изучение функции с помощью производной 6.1.Возрастание и убывание функции. Экстремум функции. Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1. |[pic] | |Рис.1 (а) | |[pic] | |Рис.1 (б) | Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения ?x и ?y имеют одинаковые знаки. График возрастающей функции показан на рисунке1(а). Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2) ? f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1 ] она сохраняет постоянное значение C Определение 2. Функция f (x) называется убывающей в интервале ( a, b ) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если f(x2) < f(x1) при x2 > x1. Из этого определения следует, что у убывающей в интервале ( a, b ) функции f (x) в любой точке этого интервала приращения ?x и ?y имеют разные знаки. График убывающей функции показан на рисунке 1(б). Если из неравенства x2 > x1 вытекает нестрогое неравенство f(x2) ? f(x1), то функция f (x) называется невозрастающей в интервале ( a, b ). Пример такой функции показан на рисунке 2(б). На интервале [ x0 , x1 ] она сохраняет постоянное значение C. Теорема 1. Дифференцируемая и возрастающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неотрицательную производную. Теорема 2. Дифференцируемая и убывающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неположительную производную. Пусть данная непрерывная функция убывает при возрастании x от x0 до x1, затем при возрастании x от x1 до x2 - возрастает, при дальнейшем возрастании x от x2 до x3 она вновь убывает и так далее. Назовем такую функцию колеблющейся. График колеблющейся функции показан на рисунке 3. Точки A, C, в которых функция переходит от возрастания к убыванию, так же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривой y = f (x), а их абциссы - критическими значениями аргумента x В той точке, где функция переходит от возрастания к убыванию, ордината больше соседних с ней по ту и другую сторону ординат. Так, ордината точки A больше ординат, соседних с ней справа и слева и достаточно к ней близких, т.е. значение функции в точке A, абсцисса которой равна x0, больше значений функции в точках, абсциссы которых достаточно близки к x0 : f (x0) > f (x0+?x). На рисунке 4(a) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она возрастает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - убывает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x). Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется максимальным значением функции f (x) или просто максимумом. Определение 3. Максимумом функции f (x) называется такое значение f (x0) этой функции, которое не меньше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 . Так, на рисунке 3 показаны два максимума: f (x0) и f (x2) . В той точке, где функция переходит от убывания к возрастанию, ордината меньше ординат в достаточно близких к ней точках, расположенных справа и слева от нее. Так ордината точки B меньше ординат в точках соседних и достаточно близких к точке x1 справа и слева. Значение функции в точке, абсцисса которой равна x1 , меньше значений функции в точках, абсциссы которых достаточно мало отличаются от x1 : f (x1) < f (x1+?x). На рисунке 4(б) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она убывает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - возрастает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x). Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется минимальным значением функции f (x) или просто минимумом. Определение 4. Минимумом функции f (x) называется такое значение f (x0) этой функции, которое не больше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 . Так, на рисунке 3 показаны два минимума: f (x1) и f (x3) . По определению наибольшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)?f (x), а наименьшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)?f (x). Из этих определений следует, что функция может достигать своего наибольшего или наименьшего значения как внутри интервала [ a, b ] , так и на его концах a и b. Здесь же максимум и минимум функции f (x) были определены соответственно как наибольшее и наименьшее значения в некоторой окрестности точки x0 . Если в точке x0 функция f (x) достигает максимума или минимума, то говорят, что функция f (x) в точке x0 достигает экстремума (или экстремального значения). Функция f (x) может иметь несколько экстремумов внутри интервала [ a, b ], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f (x) на интервале [ a, b ] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала. Аналогично наименьшее значение функции f (x) на интервале [ a, b ] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала. Например функция, изображенная на рисунке 3, достигает наибольшего значения f (x) в точке x2 , наименьшего - в точке x1 интервала [ x0, x3 ]. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов. Теорема 3 (необходимый признак экстремума). Если функция f (x) имеет в точке x0 экстремум, то ее производная в данной точке или равна нулю или не существует. Но функция f (x) может иметь экстремумы и в тех точках x0, в которых ее производная не существует. Например функция y = | x | в точке x0 = 0 не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной. |[pic] | |Рис. 6 | На рисунке 6 изображена функция f (x), не имеющая в точке x0 производной [f' (x0) = ?] и достигающая в этой точке максимума. При x > x0 и x < x0 f' (x) > +?, при x > x0 и x > x0 f' (x) > -?. Значит касательная кривой y = f (x) при x = x0 перпендикулярна к оси Ox. Такие точки называются точками возврата кривой y=f(x). Таким образом, необходимым признаком существования в точке x0 экстремума функции f (x) является выполнение следующего условия: в точке x0 производная f' (x) или равна нулю, или не существует. Этот признак не является достаточным условием существования экстремума функции f (x) в точке x0 : можно привести много примеров функций, удовлетворяющих этому условию при x = x0 , но, однако, не достигающих экстремума при x = x0. Например, производная функции y = x3 при x0 = 0 равна нулю, однако эта функция при x0 = 0 не достигает экстремального значения. 6.2.Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции. Теорема 4.Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале. Теорема 5. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале. Теорема 6. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+"). Теорема 7. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности. 6.3 .Правило нахождения экстремума 1°. Чтобы найти экстремум функции, надо: 1) найти производную данной функции; 2) приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума; 3) определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0); 4) если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции; 5) заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции. Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной. 6.4.Точка перегиба графика функции. Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вверх, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит под касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок 1а). |Рисунок 1 | Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вниз, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит над касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок 1б). Из определения выпуклости вверх (вниз) кривой y = f(x) в точке x0 следует, что для любой точки x из интервала (x0 - h, x0 + h), не совпадающей с точкой x0, имеет место неравенство f(x) - y < 0 ( f(x) - y > 0) где f(x) - ордината точки M кривой y = f(x), y - ордината точки N касательной y - y0 = f '(x0 )(x - x0 ) к данной кривой в точке A. (смотри рисунок 1, а, б). Ясно, что и наоборот, если для любой точки x интервала (x0 - h, x0 + h), не совпадающей с x0, выполняется неравенство f(x) - y < 0 (f(x) - y > 0), то кривая y = f(x) в точке x0 обращена выпуклостью вверх (вниз). Будем называть кривую y = f(x) выпуклой вверх (вниз) в интервале (a, b), если она выпукла вверх (вниз) в каждой точке этого интервала. Если кривая y = f(x) обращена выпуклостью вверх в интервале (a, b), то с увеличением аргумента x угловой коэффициент касательной к этой кривой в точке с абсциссой x будет уменьшаться. |[pic] | |Рисунок 2. | В самом деле, пусть абсцисса x1 точки A меньше абсциссы x2 точки B (рис. 2). Проведем касательные t1 и t2 соответствено в точках A и B к кривой y = f(x). Пусть a и j - углы наклона касательных t1 и t2. Тогда из рис. 2 видим, что j - внешний угол треугольника ECD, а поэтому он больше угла a. Следовательно tg? > tg? или f '(x1 ) > f '(x2 ). Таким образом мы показали, что если в интервале (a, b) кривая y = f(x) обращена выпуклостью вверх, то с увеличением аргумента x функция y = f '(x) убывает. Поэтому вторая производная f ''(x) функции f(x), как производная убывающей фунции f '(x), будет отрицательна или равна нулю в интервале (a, b): f ''(x)?0. |[pic] | |Рисунок 3. | Если кривая y = f(x) обращена выпуклостью вниз, то из рис.2 непосредственно видно, что tg? > tg? т.е. f '(x2 ) > f '(x1 ), а поэтому в интервале (a, b) производная f '(x) возрастает. Тогда вторая производная f ''(x) функции f (x), как производная возрастающей в интервале (a, b) функции f '(x), будет положительна или равна нулю: f ''(x)?0. Докажем, что и наоборот, если f ''(x)?0 в некотором интервале (a, b), то в этом интервале кривая y = f (x) обращена выпуклостью вверх; если f ''(x)?0 в интервале (a, b), то в этом интервале кривая обращена выпуклостью вниз. Запишем уравнение касательной y - y0 = f '(x0 )(x - x0 ) к кривой y = f (x) в точке x0, где a < x0 b, в виде y = y0 + f '(x0 )(x - x0 ). Очевидно, y0 = f(x0 ), а потому последнее уравнение можно записать в виде y = f(x0 ) + f '(x0 )(x - x0 ). (1) Но, согласно формуле Тейлора, при n = 2 имеем: [pic] (2) Фиксируя x в интервале (a, b) и вычитая почленно из уравнения (2) уравнение (1), получим:[pic] (3) Если f ''[x0 + ?(x - x0 )]?0, где 0 < ? < 1, то имеем f(x) - y ? 0 откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вверх. Если f ''[x0 + ?(x - x0 )]?0, то имеем f(x) - y ? 0 откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вниз. Так как была зафиксирована произвольная точка x интервала (a, b), то высказанное выше утверждение доказано. |[pic] | |Рисунок 4. | Точка кривой, в которой кривая меняет направление изгиба, т.е. переходит от выпуклости вверх к выпуклости вниз или наоборот, называется точкой перегиба кривой (рис.4). (В этом определении предполагается, что в точке перехода кривой от выпуклости вверх к выпуклости вниз (или наоборот) имеется единственная касательная). Теорема 8. Пусть функция f(x) имеет непрерывную вторую производную f ''(x) и пусть A[x0 ; f(x0 )] - точка перегиба кривой y = f(x). Тогда f ''(x0 ) = 0 или не существует. Доказательство. Рассмотрим для определенности случай, когда кривая y = f(x) в точке перегиба A[x0 ; f(x0 )] переходит от выпуклости вверх в выпуклости вниз (рис.4). Тогда при достаточно малом h в интервале (x0 - h, x0 ) вторая производная f ''(x) будет меньше нуля, а в инетрвале (x0, x0 +h) - больше нуля. Но f ''(x) - функция непрерывная, а потому, переходя от отрицательных значений к положительным, она при x = x0 обращается в нуль: f ''(x0 ) = 0. |[pic] | |Рисунок 5. | На рис.5 изображен график функции [pic]. Хотя при x0 = 0 имеется касательная и точка перегиба, все же вторая производная f ''(x) не равна нулю, она даже не существует в этой точке. В самом деле, имеем [pic] Итак, f ''(0) не существует. Но тем не менее точка O(0; 0) является точкой перегиба, так как при x < 0 f ''(x) > 0 и кривая выпукла вниз, а при x > 0 f ''(x) < 0 и кривая выпукла вверх. Таким образом в случае непрерывности второй производной f ''(x) обращение в нуль или несуществование ее в какой-нибудь точки кривой y = f(x) является необходимым условием существования точки перегиба. Однако это условие не является достаточным. Теорема 9. Если вторая производная f ''(x) непрерывна и меняет знак при x = x0, то точка A[x0 ; f(x0 )] является точкой перегиба кривой y = f(x) при условии, конечно, что в точке A существует касательная. Доказательство. Пусть например f ''(x) < 0 при x0 - h < x < x0 и f ''(x) > 0 при x0 < x < x0 + h. Тогда в интервале (x0 - h; x0 ) кривая y = f(x) обращена выпуклостью вверх, а в интервале (x0 ; x0 + h) - выпклостью вниз (смотри рис.4), т.е. точка A[x0 ; f(x0 )] есть точка перегиба кривой, что и требовалось доказать. 6.5.Общая схема исследования функции и построение ее графика. 1. Находим область определения функции f(x) 2. Находим точки пересечения кривой y = f(x) с осями координат и наносим их на чертеж. 3. Определяем, симметрична ли кривая y = f(x) относительно осей координат и начала координат. 4. Исследуем функцию y = f(x) на непрерывность. Если функция имеет в точке x0 разрыв, то отмечаем ее на чертеже. 5. Находим асимптоты кривой, если они имеются. 6. Находим максимум и минимум функции и отмечаем на чертеже точки кривой с максимальной и минимальной ординатами. 7. Исследуем кривую y = f(x) на выпуклость вверх или вниз, находим точки перегиба кривой и отмечаем их на чертеже. 8. Вычерчиваем кривую y = f(x). 6.6. Касательная и нормаль к плоской кривой. Пусть даны кривая y = f(x) и точка M (x1 ; y1) на ней. Требуется составить уравнения касательной и нормали (смотри рисунок). Как известно, угловой коэффициент k касательной к кривой y = f(x) в точке M (x1 ; y1) равен значению f '(x1) производной y' = f '(x) при x = x1/ Следовательно, уравнение касательной можно записать в виде уравнения прямой, проходящей через данную точку в данном направлении, т.е. в виде y - y1 = f '(x1)(x - x1) Нормалью называется прямая, проходящая через точку касания перпендикулярно касательной. поэтому ее угловой коэффициент равен [pic], а уравнение записывается в виде [pic] 7.Экономическое приложение производной. 7.1.Экономическая интерпретация производной В экономической теории активно используется понятие «маржинальный», что означает «предельный». Введение этого понятия в научный оборот в XIX веке позволило создать совершенно новый инструмент исследования и описания экономических явлений - инструмент, посредством которого стало возможно ставить и решать новый класс научных проблем. Классическая экономическая теория Смита, Рикардо, Милля обычно имела дело со средними величинами: средняя цена, средняя производительность труда и т.д. Но постепенно сложился иной подход. Существенные закономерности оказалось можно обнаружить в области предельных величин. Предельные или пограничные величины характеризуют не состояние (как суммарная или средняя величины.), а процесс, изменение экономического объекта. Следовательно, производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Надо заметить, что экономика не всегда позволяет использовать предельные величины в силу прерывности (дискретности) экономических показателей во времени (например, годовых, квартальных, месячных и т.д.). В то же время во многих случаях можно отвлечься от дискретности и эффективно использовать предельные величины. Рассмотрим ситуацию: пусть y - издержки производства, а х - количество продукции, тогда (x- прирост продукции, а (y - приращение издержек производства. В этом случае производная [pic] выражает предельные издержки производства и характеризует приближенно дополнительные затраты на производство дополнительной единицы продукции [pic],где MC – предельные издержки (marginal costs); TC – общие издержки (total costs); Q - количество. Геометрическая интерпретация предельных издержек - это тангенс угла наклона касательной к кривой в данной точке (см. рис.). Аналогичным образом могут быть определены и многие другие экономические величины, имеющие предельный характер. Другой пример - категория предельной выручки (MR— marginal revenue) — это дополнительный доход, полученный при переходе от производства n-ной к (n+1)-ой единице продукта. Она представляет собой первую производную от выручки: [pic]. При этом R= PQ, где R–выручка (revenue); P–цена (price). Таким образом [pic], ( MR= P. Это равенство верно относительно условий совершенной конкуренции, когда экономические агенты каждый по отдельности не могут оказать влияния на цену. Обратимся к теориям потребления: кардиналистской и ординалистской. Кардиналистский (количественный) подход к теории цен предполагает равное влияние величин полезности товара и затрат на его производства на формирование цены. В основе рассматриваемого подхода - исследования А. Маршалла. Ординалистский (Порядковый) подход к теории цен разрабатывался И. Фишером, В. Парето. Суть данного подхода состоит в том, что потребители, имеющие определенный уровень доходов, сравнивают между собой цены и полезность различных наборов экономических благ и отдают предпочтение тем наборам, которые при сравнительно низких ценах имеют максимальную полезность для конкретного потребителя. В соответствии с первой, суммарную полезность U для любого субъекта, если в экономике существует n потребительских благ в объемах х1, x2,… хn, можно выразить в виде кардиналистской функции полезности: U= U(х1, x2,… xn). Предельные полезности MU товаров выступают в качестве ее частных производных: [pic]. Они показывают, на сколько изменяется полезность всей массы благ, достающихся субъекту, при бесконечно малом приращении количества блага i (i=1,2…n) В ординалистской теории полагается, что потребитель оценивает полезность не отдельных благ, а потребительских наборов; что он способен сопоставить полезности наборов товаров. Ординалистская функция полезности исследована подробно, значительный вклад в ее изучение внес Дж. Хикс. После его трудов началось прогрессирующее вытеснение понятия "предельная полезность" категорией предельной нормы замещения (MRS – marginal rate of substitution). Предположим, что происходит замещение товара y товаром х при движении сверху вниз вдоль кривой безразличия. Предельная норма замещения товара y товаром x показывает, какое количество товара x необходимо для того, чтобы компенсировать потребительскую утрату единицы товара y. Они определяются так: [pic]. Т.к. dy отрицательно, знак "-" вводится, чтобы MRS была больше нуля. Итак, предельная норма замещения геометрически есть касательная к кривой безразличия в данной точке. Значение предельной нормы замещения по абсолютной величине равно тангенсу угла наклона касательной к кривой безразличия. Приведем еще один пример элементарного анализа на микроуровне, который имеет аналог и на макроуровне. Любой индивид свой доход Y после уплаты налогов использует на потребление C и сбережение S. Ясно, что лица с низким доходом, как правило, целиком используют его на потребление, так что размер сбережения равен нулю. С ростом дохода субъект не только больше потребляет, но и больше сберегает. Как установлено теорией и подтверждено эмпирическими исследования, потребление и сбережение зависят от размера дохода: Y= C(Y) + S(Y). Зависимость потребления индивида от дохода называется функцией склонности к потреблению или функцией потребления. Использование производной позволяет определить такую категорию, как предельную склонность к потреблению MPC (marginal property to consume), показывающую долю прироста личного потребления в приросте дохода: [pic]. По мере увеличения доходов MPC уменьшается. Последовательно определяя сбережения при каждом значении дохода, можно построить функцию склонности к сбережению или функцию сбережения. Долю прироста сбережений в приросте дохода показывает предельная склонность к сбережению MPS(marginal propensity to save): [pic]. С увеличением доходов MPS увеличивается. Еще одним примером использования производной в экономике является анализ производственной функции. Поскольку ограниченность ресурсов принципиально не устранима, то решающее значение приобретает отдача от факторов производства. Здесь также применима производная, как инструмент исследования. Пусть применяемый капитал постоянен, а затраты труда увеличиваются. Можно ввести в экономический анализ следующую категорию - предельный продукт труда MPL(marginal product of labor) – это дополнительный продукт, полученный в результате дополнительных вложений труда (L – labor) при неизменной величине капитала:[pic]. Если вложения осуществляются достаточно малыми порциями, то [pic], т.к. dY - результат, dL - затраты, то MPL – предельная производительность труда. Аналогично, MPk - предельный продукт капитала - дополнительный продукт, полученный в результате дополнительных вложений капитала K при неизменной величине труда:[pic]. Если вложения осуществляются малыми порциями, то [pic]. MPk - характеризует предельную производительность капитала. Для исследования экономических процессов и решения других прикладных задач часто используется понятие эластичности функции. Определение: Эластичностью функции Еx(y) называется предел отношения относительного приращения функции y к относительному приращению переменной x при (x(0: [pic]. Эластичность функции показывает приближенно, на сколько процентов изменится функция y= f(x), при изменении независимой переменной x на 1%. Приведем несколько конкретных иллюстраций такой зависимости. Прямой коэффициент эластичности спроса по цене устанавливает, на сколько процентов увеличивается (уменьшается) спрос Q на товар i при уменьшении (увеличении) его цены P на 1%: [pic]. Перекрестный коэффициент эластичности спроса по цене [pic] показывает, на сколько процентов изменится спрос на товар i при однопроцентных колебаниях цены товара j (j = 1,2,…n): [pic]. Количественную сторону взаимодействия дохода и спроса отражает коэффициент эластичности спроса по доходу, который указывает, на сколько процентов изменится спрос на i-тый товар Qi если доход, предназначенный на текущее потребление, изменится на 1%: [pic]. Можно привести и другие примеры использования производной при фокусировке различных категорий и закономерностей. Дальнейшее раскрытие экономического смысла хотелось бы осуществить через рассмотрение экономической интерпретации математических теорем. 7.2. Применение производной в экономической теории. Проанализировав экономический смысл производной, нетрудно заметить, что многие, в том числе базовых законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем. Вначале рассмотрим экономическую интерпретацию теоремы: если дифференцируемая на промежутке X функция y= f(x) достигает наибольшего или наименьшего значения во внутренней точке x0 этого промежутка, то производная функции в этой точке равна нулю, то есть f’(x0) = 0. Один из базовых законов теории производства звучит так: "Оптимальный для производителя уровень выпуска товара определяется равенством предельных издержек и предельного дохода". То есть уровень выпуска Qo является оптимальным для производителя, если MC(Qo)=MR(Qo), где MC - предельные издержки, а MR - предельный доход. Обозначим функцию прибыли за П(Q). Тогда П(Q) = R(Q) — C(Q), где R – прибыль, а C – общие издержки производства. Очевидно, что оптимальным уровнем производства является тот, при котором прибыль максимальна, то есть такое значение выпуска Qo, при котором функция П(Q) имеет экстремум (максимум). По теореме Ферма в этой точке П’(Q) = 0. Но П’(Q)=R’(Q) - C’(Q), поэтому R’(Qo) = C’(Qo), откуда следует, что MR(Qo) = MC(Qo). Другое важное понятие теории производства - это уровень наиболее экономичного производства, при котором средние издержки по производству товара минимальны. Соответствующий экономический закон гласит: “оптимальный объем производства определяется равенством средних и предельных издержек”. Получим это условие как следствие сформулированной выше теоремы. Средние издержки AC(Q) определяются как [pic], т.е. издержки по производству всего товара, деленные на произведенное его количество. Минимум этой величины достигается в критической точке функции y=AC(Q), т.е. при условии [pic], откуда TC’(Q)Q—TC(Q) = 0 или [pic], т.е. MC(Q)=AC(Q). Понятие выпуклости функции также находит свою интерпретацию в экономической теории. Один из наиболее знаменитых экономических законов - закон убывающей доходности - звучит следующим образом: "с увеличением производства дополнительная продукция, полученная на каждую новую единицу ресурса (трудового, технологического и т.д.), с некоторого момента убывает". Иными словами, величина [pic], где (y - приращение выпуска продукции, а (x - приращение ресурса, уменьшается при увеличении x. Таким образом, закон убывающей доходности формулируется так: функция y= f(x), выражающая зависимость выпуска продукции от вложенного ресурса, является функцией, выпуклой вверх. Другим базисным понятием экономической теории является функция полезности U= U(x), где х - товар, а U – полезность (utility). Эта величина очень субъективная для каждого отдельного потребителя, но достаточно объективная для общества в целом. Закон убывающей полезности звучит следующим образом: с ростом количества товара, дополнительная полезность от каждой новой его единицы с некоторого момента убывает. Очевидно, этот закон можно переформулировать так: функция полезности является функцией, выпуклой вверх. В такой постановке закон убывающей полезности служит отправной точкой для математического исследования теории спроса и предложения. 7.3. Использование производной для решения задач по экономической теории. Задача 1. Цементный завод производит Х т. цемента в день. По договору он должен ежедневно поставлять строительной фирме не менее 20 т. цемента. Производственные мощности завода таковы, что выпуск цемента не может превышать 90 т. в день. Определить, при каком объеме производства удельные затраты будут наибольшими (наименьшими), если функция затрат имеет вид: К=-х3+98х2+200х. Удельные затраты составят К/х=-х2+98х+200 Наша задача сводится к отысканию наибольшего и наименьшего значения функции У= -х2+98х+200. На промежутке [20;90]. Вывод: x=49, критическая точка функции. Вычисляем значение функции на концах промежутках и в критической точке. f(20)=1760 f(49)=2601 f(90)=320. Таким образом, при выпуске 49 тонн цемента в день удельные издержки максимальны, это экономически не выгодно, а при выпуске 90 тонн в день минимально, следовательно можно посоветовать работать заводу на предельной мощности и находить возможности усовершенствовать технологию, так как дальше будет действовать закон убывающей доходности. И без реконструкции нельзя будет увеличить выпуск продукции. Задача 2. Задача: Предприятие производит Х единиц некоторой однородной продукции в месяц. Установлено, что зависимость финансовых накопления предприятия от объема выпуска выражается формулой f(x)=-0,02x^3+600x -1000. Исследовать потенциал предприятия. Функция исследуется с помощью производной. Получаем, что при Х=100 функция достигает максимума. Вывод: финансовые накопления предприятия растут с увеличением объема производства до 100 единиц, при х =100 они достигают максимума и объем накопления равен 39000 денежных единиц. Дальнейший рост производства приводит к сокращению финансовых накоплений. Задача 3. Спрос-это зависимость между ценой единицы товара и количеством товара, которое потребители готовы купить при каждой возможной цене, за определенный период времени и при прочих равных условиях. Зависимость спроса от цены описывается функцией [pic], Данная функция исследуется с помощью производной: [pic] Производная меньше нуля, если P>=0. Определим точку перегиба функции. Такой точкой является точка (0,5;0,6), т.е. при P<1/2 спрос убывает медленнее, а при P>1/2 спрос убывает все быстрее. [pic] Задача 4. Выручка от реализации товара по цене p составляет: [pic] (Денежных единиц), где [pic]. Исследуем эту функцию с помощью производной. Производная этой функции: [pic] положительна, если p<1/2 и отрицательна для p>1/2, это означает, что с ростом цены выручка в начале увеличивается ( несмотря на падение спроса) и p=1/2 достигает максимального значения [pic], дальнейшее увеличение цены не имеет смысла, т.как оно ведет к сокращению выручки. Темп изменения выручки выражается второй производной. [pic] [pic] темп положительный [pic]темп отрицательный На промежутке (0,1/2) функция возрастает все медленнее, то есть дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом для [pic], а затем темп убывания становится положительным и для P>0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены. Для наглядной демонстрации выше сказанного составим таблицу и построим график. |p |(0, 1/2) |1/2 |[pic] |[pic] |[pic] | |U'(p) |+ |0 |- |-0,47 |- | |U''(p) |- | |- |0 |+ | |U (p) |возрастает |0,3 |убывает |0,2 точка |убывает | | |выпукла |max |выпукла |перегиба |вогнута | Вывод: На промежутке (0, 1/2) функция возрастает все медленнее. Соответствующая часть графика выпукла. Как уже отмечалось, дальнейшее повышение цены не выгодно. Сначала выручка убывает с отрицательным темпом[pic], а затем темп убывания V(p) становится положительным. Для р > 0,9 выручка убывает все быстрее и приближается к нулю при неограниченном увеличении цены. На промежутке [pic]функция U(p) вогнута. В точке [pic] график перегибается (см. на рисунке): [pic] 8. Применение производной в физике В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин. Задача 1. Лестница длиной 5м приставлена к стене таким образом, что верхний ее конец находится на высоте 4м. В некоторый момент времени лестница начинает падать, при этом верхний конец приближается к поверхности земли с постоянным ускорением 2 м/с2. С какой скоростью удаляется от стены нижний конец лестницы в тот момент, когда верхний конец находится на высоте 2м? [pic] Пусть верхний конец лестницы в момент времени t находится на высоте y(0)= 4м, а нижний на расстоянии x(t) от стенки. Высота y(t) описывается формулой: [pic],так как движение равноускоренное. В момент t: y(t) = 2, т.е. 2 = 4 - t2, из которого [pic]; В этот момент [pic] по т. Пифагора, т.е. [pic] Скорость его изменения [pic] Ответ:[pic] Задача 2 Дождевая капля падает под действием силы тяжести; равномерно испаряясь так, что ее масса m изменяется по закону m(t) = 1 - 2/3t. (m изменяется в граммах, t - в секундах). Через сколько времени после начала падения кинематическая энергия капли будет наибольшей? Скорость капли [pic] , её кинетическая энергия в момент t равна [pic] Исследуем функцию [pic] на наибольшее с помощью поизводной: [pic] [pic]=0 t1=0 t2=1 (t>0) При t =1 функция Ek(t) принимает наибольшее значение, следовательно кинетическая энергия падающей капли будет наибольшей через 1сек. Задача 3 Источник тока с электродвижущей силой Е=220 В и внутренним сопротивлением r = 50 Ом подключен к прибору с сопротивлением R.Чему должно быть равно сопротивление R потребителя, чтобы потребляемая им мощность была наибольшей? По закону Ома сила тока в цепи есть [pic] [pic] выделяемая в потребителе мощность P=I2R, то есть [pic] Исследуем функцию P(R) на наибольшее с помощью производной: [pic] P’(R) = 0 : r - R = 0, R = r = 50; При R = 50 функция P(R) принимает наибольшее значение. Следовательно, потребляемая мощность будет наибольшей при сопротивлении R =50 Ом. Ответ: 50 Ом 9. Применение производной в алгебре 9.1. Применение производной к доказательству неравенств. Одно из простейших применений производной к доказательству неравенств основано на связи между возрастанием и убыванием функции на промежутке и знаком ее производной. С помощью теоремы Лагранжа доказана теорема: Теорема 1. Если функция [pic]на некотором интервале [pic]имеет производную [pic]всюду на [pic], то [pic]на [pic]монотонно возрастает; если же [pic] всюду на [pic], то [pic]на [pic]монотонно убывает. Очевидным следствием (и обобщением) этой теоремы является следующая: Теорема 2. Если на промежутке [pic] выполняется неравенство [pic], функция [pic]и [pic]непрерывны в точке [pic] и [pic], то на [pic] выполняется неравенство [pic]. Предлагаю несколько задач на доказательство неравенств с использованием этих теорем. Задача 1. Пусть [pic].Докажите истинность неравенства [pic]. (1)[pic] Решение: Рассмотрим на [pic] функцию [pic]. Найдем ее производную: [pic]. Видим, что [pic]при [pic]. Следовательно, [pic] на [pic] убывает так, что при [pic] [pic]. Но [pic] [pic] Следовательно неравенство (1) [pic] верно. Задача 2. Пусть [pic] и [pic]положительные числа, [pic] Тогда очевидно, что [pic], [pic]. Можно ли гарантировать, что неравенство [pic] (2) верно а) при [pic]; б) при [pic]? Решение: а) Рассмотрим функцию [pic]. Имеем: [pic] Отсюда видно, что при [pic]функция [pic]возрастает. В частности, она возрастает на интервале [pic] Поэтому при [pic] неравенство (2) справедливо. б) на интервале [pic] [pic], т.е. [pic] убывает. Поэтому при любых [pic] и [pic], для которых [pic], неравенство (2) неверно, а верно неравенство противоположного смысла: [pic] Задача 3. Доказать неравенство: [pic] при [pic] (3). Воспользуемся теоремой 2. [pic] и [pic], верно неравенство [pic]: [pic] на промежутке [pic]и выполнимо условие [pic] где [pic], в данном случае равно 0. Следовательно неравенство (3) верно. Задача 4. Доказать неравенство: [pic] [pic] (4). Решение: [pic], [pic]; [pic] Неравенство [pic] при любых [pic] верно. Значит неравенство (4) верно. Задача 5. Доказать, что если [pic], то [pic] (5). Решение: Пусть [pic] Тогда [pic] Чтобы найти, при каких значениях [pic] функция [pic]положительная, исследуем ее производную [pic]. Так как при [pic] [pic] то [pic] Следовательно, функция [pic]возрастает при [pic]. Учитывая, что [pic] и [pic] непрерывна, получаем [pic], при [pic]. Поэтому [pic] возрастает на рассматриваемом интервале. Поскольку [pic] непрерывна и [pic] то [pic] при [pic]. Неравенство (5) верно. Задача 6. Выясним, что больше при [pic]: [pic] или [pic]. Решение: Предстоит сравнить с числом 1 дробь [pic]. Рассмотрим на [pic] вспомогательную функцию [pic]. Выясним, будет ли она монотонна на отрезке [pic]. Для этого найдем ее производную (по правилу дифференцирования дроби): [pic] [pic] при [pic]. В силу теоремы 1 функция [pic] вырастает на отрезке [pic]. Поэтому, при [pic] [pic] т.е. [pic] [pic] при [pic]. При решении задачи (6) встретился полезный методический прием, если нежно доказать неравенство, в котором участвует несколько букв, то часто целесообразно одну из букв (в данном примере это была буква [pic]) считать применимой (чтобы подчеркнуть это обстоятельство, мы ее заменяли буквой [pic], а значение остальных букв (в данном случае значение буквы [pic]) считать фиксированными. Иногда приходится при решении одной задачи применить указанный прием несколько раз. Задача 7. Проверить, справедливо ли при любых положительных [pic] неравенство: [pic] (6). Решение: Пусть [pic] Рассмотрим функцию [pic]. При [pic] имеем [pic]. Отсюда видно (теорема 1), что [pic] убывает на [pic] Поэтому при [pic]имеем [pic] т.е. мы получили неравенство: [pic] (7). Теперь рассмотрим другую вспомогательную функцию [pic]. При [pic] имеем: [pic] Следовательно, [pic]убывает на [pic], т.е. [pic] при [pic] значит, [pic] (8), Из неравенств (7) и (8) следует неравенство (6). Для выяснения истинности неравенств иногда удобно воспользоваться следующим утверждением, которое непосредственно вытекает из теоремы 1: Теорема 3: Пусть функция [pic] непрерывна на [pic]и пусть имеется такая точка с из [pic], что [pic]на [pic] и [pic]на [pic]. Тогда при любом х из [pic] справедливо неравенство [pic] причем равенство имеет место лишь при [pic]. Задача 8. Проверьте, справедливо ли для всех действительных х следующее неравенство: [pic][pic] Решение: Выясним, где функция возрастает, а где убывает. Для этого найдем производную: [pic]. Видно, что [pic] на [pic] и [pic] на [pic]. Следовательно, в силу теоремы 3 т.е. неравенство (9) справедливо, причем равенство имеет место лишь при [pic]. 9.2. Применение производной в доказательстве тождеств. Доказательства тождества можно достигнуть иногда, если воспользоваться одним очевидным замечанием: Если на некотором интервале функция тождественно равна постоянной, то ее производная на этом интервале постоянно равна нулю: [pic] на [pic] на [pic]. Задача 1. Проверить тождество: [pic] (1) Доказательство: Рассмотрим функцию [pic] Вычислим ее производную (по х): [pic] Поэтому (замечание) [pic]. Следовательно, [pic] что равносильно тождеству (1). Задача 2. Проверить тождество: [pic] (2) Доказательство: Рассмотрим функцию [pic] Докажем, что [pic] Найдем ее производную: [pic] [pic][pic][pic] Значит[pic]. При х=0 [pic],следовательно,тождество (2) верно. В связи с рассмотренными примерами можно отметить, что при нахождении постоянной, интегрирования С полезно фиксировать значения переменной, по которой производится дифференцирование, таким образом, чтобы получить возможно более простые выкладки. 9.3. Применение производной для упрощения алгебраических и тригонометрических выражений. Прием использования производной для преобразования алгебраических и тригонометрических выражений основан на том, производная иногда имеет значительно более простой вид, чем исходная функция, благодаря чему, она легко интегрируется, что и позволяет найти искомое преобразование исходного выражения: Задача 1 Упростить выражение: [pic] Решение: Обозначив данное выражение [pic] будем иметь: [pic] [pic] [pic] [pic] Таким образом, заданное выражение (1) равно [pic]. Задача 2. Упростить выражение: [pic] Решение: Обозначив это выражение через [pic], будем иметь: [pic] отсюда [pic]. и при [pic]получаем: [pic] Так что [pic] Задача 3. Упростить запись функции: [pic] (2) Решение: Применение обычного аппарата тригонометрии приведёт к относительно громоздким выкладкам. Здесь удобнее воспользоваться производной: [pic] Отсюда [pic] Найдём [pic]: [pic] Таким образом функция (2) равна [pic] Задача 4. Упростить запись многочлена: [pic] (3) Решение: Обозначим многочлен (3) через [pic] и найдём последовательно первую и вторую производные этой функции: [pic] [pic] Ясно, что [pic] Поэтому [pic], где [pic], найдём [pic]: при [pic] [pic], [pic]. 9.4.Разложение выражения на множители с помощью производной. Задача 1. Разложить на множители выражение: [pic] (1) Решение: Считая [pic]переменной, а [pic] и [pic] постоянными фиксированными (параметрами) и обозначая заданное выражение через [pic], будем иметь: [pic] Поэтому [pic] (2) где [pic]- постоянная, т.е. в данном случае - выражение, зависящее от параметров [pic] и [pic]. Для нахождения [pic] в равенстве [pic] положим [pic] тогда [pic]. Получим [pic] Задача 2. Разложить на множители выражение: [pic] (3) Решение: Поскольку переменная [pic] входит в данное выражение в наименьшей степени, рассмотрим его, как функцию [pic] и будем иметь: [pic] [pic] получим: [pic] Таким образом, исходное выражение (3) равно [pic] Задача 3. Разложить на множители выражение: [pic] Решение: Обозначив данное выражение через [pic] и считая [pic] и [pic] постоянными, получим: [pic]откуда [pic], где [pic] зависит только от [pic] и [pic]. Положив в этом тождестве [pic], получим [pic] и [pic] Для разложения на множители второго множителя используем тот же приём, но в качестве переменной рассмотрим [pic], поскольку эта переменная входит в меньшей степени, чем [pic]. Обозначая его через [pic] и считая [pic] и [pic]постоянными, будем иметь: [pic] отсюда: [pic] [pic] [pic] Таким образом исходное выражение (4) равно [pic] 9.5. Применение производной в вопросах существования корней уравнений. С помощью производной можно определить сколько решений имеет уравнение. Основную роль здесь играют исследование функций на монотонность, нахождение её экстремальных значений. Кроме того, используется свойство монотонных функций: Задача 1. Если функция [pic] возрастает или убывает на некотором промежутке, то на этом промежутке уравнение [pic] имеет не более одного корня. [pic] (1) Решение: Область определения данного уравнения - промежуток [pic] определение на этом промежутке функцию [pic], положив [pic] Тогда, на [pic] [pic] [pic] [pic] [pic] ( [pic], и таким образом функция [pic]- возрастающая, так что данное уравнение (1) не может иметь более одного решения. Задача 2. При каких значениях [pic] имеет решения уравнение [pic] (2) Решение: область определения уравнения - отрезок [pic], рассмотрим функцию [pic], положив [pic] Тогда на открытом промежутке [pic] [pic] [pic], так что [pic]- единственная критическая точка функции [pic], являющаяся, очевидно, точкой максимума. Поскольку [pic] [pic] то [pic] примет наибольшее значение при [pic], а наименьшее значение - при [pic]. Так как функция [pic] непрерывна, то её область значений представляет собой отрезок [pic], между её наименьшим и наибольшим значением. Другими словами, исходное уравнение (2) имеет решения при [pic]. Заключение Настоящая работа даёт учащимся новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера для учащихся покажутся новыми и необыкновенными, что расширит их кругозор и повысит интерес к производной. Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0. Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0 Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора. Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин. Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул. Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.). Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии. [pic] ----------------------- [pic] Рис.5 Рис.2 (а) + – 50 Е’ E [pic] [pic] + – 1 E’ E [pic] Рис.4 (б) Рис.4 (а) Рис. 3 Рис.2 (б) f(x) [pic] а б [pic] [pic] С С B Q C(t) E A |
|
© 2007 |
|