РУБРИКИ |
Лекция: Отрывок из учебника по теории систем и системному анализу |
РЕКЛАМА |
|
Лекция: Отрывок из учебника по теории систем и системному анализуРазумеется, на _>ис. 1.15 иллкктрщкжаи только общий принцип взаимоотноше ний между различными оргацамн управления страной, а реальная структ ра форми руется с помощью соответствующих нормативно-правовых и иорматиЕ к»-мстоди- чсских документов, в которых регламентируются конкретные взаимодействия между органами управления. * Предприятия и организации Рис. 1.15 Смешанный характер носит и организационная структура современно го предприятия (объединения, акционерного общества и т. п.)- Как будет показано в гл. 5, линейный принцип управления реализуется в оргструкту рах с помощью древовидных иерархических структур, линейно-фунж- цлональные оргструктуры представляют собой иерархию со "слабыми* связями, программно-целевые структуры основаны на приоритете горизон тальных связей, матричные (тензорные) - на равноправии составляющих многомерной организационной структуры. / Оргструктуры, называемые матричными, являются фактически тоже смешанными, поскольку они сочетают матричные и иерархические представления. Структуры с произвольными связями. Этот вид структур обыч-, но используется на начальном этапе познания объекта, новой про?, блемы, когда идет поиск способов установления взаимоотношений, между перечисляемыми компонентами, нет ясности в характере^ связей между элементами, и не могут быть определены не только последовательности их взаимодействия во времени (сетевые модели), но и распределение элементов по уровням иерархии. При этом важно обратить внимание на достаточно распространенную ошибку при применении произвольных структур. В связи с/ 44 >еяс:кхггью взаимодействий между элементами вначале стремятся установить и представить графически все связи (рис. 1.16 а). Однако гагие представление не добавляет ничего нового к представлению элементов без связей (рис. 1.16 б), поскольку принятие решений вязано всегда с установлением наиболее существенных связей для .ринятия решения. Представление типа а) I 1
и« 1.16 а правомерно //\ ех случаях, когда от 1 бы устанавливает-
л :нла связей, их на-:фг. вленность. В приве-декном же виде это представление аналогично квадрату К.Малевича, который каждый может воспринимать по-своему. Следует отметить, что приведенные на рис. 1.16 представления фактически являются различными подходами к исследованию проблемы: можно не имея вначале ни одной связи, искать и оценивать их последовательно, используя, например, один ;п методов морфологического моделирования - метод систематического покрытия г?оля (см. гл. 2), или другие методы анализа пространства состояний путем введения тех или иных мер близости; а можно действовать по принципу Родена, сформулированному в стихотворной форме Николаем Дориэо: "Взяли камень, убрали из камня все лишнее, и остались прелестные эти черты." ' Формируются структуры с произвольными связями путем установления возможных отношений между предварительно выделенными элементами системы, введения ориентировочных оценок силы связей, и, как правило, после предварительного формирования и анализа таких структур связи упорядочивают и получают иерархические или сетевые структуры. 1.4. Ююссяфякацяк скстем Примеры классификаций систем. Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации. Предпринимались попытки классифицировать системы по виду отображаемого объекта (технические, биологические, экономические и т. п. системы); по виду научного направления, используемого для их моделирования (математические, физические, химические и др.). Системы делят на детерминированные и стохастические; открытые и закрытые; абстрактные и материальные (существующие в объективной реальности) и т. д. Н.Доризо. У статуи Венеры. — В сб.: Избранное. — М.: Гос. худ. лит., 1965. — С. 9. 45 Моделирование систем J_ Полное Неполное Приближенное Детерминированное Стохастическое Статическое Динамическое I Дискретное Дискретно-непрерывное Непрерывное I , I
Рис. 1.7. Классификация видов моделирования ш ш ш
Классификации всегда относительны. Так, в детерминированной системе можно найти а ементы стохастичности. и. напротив, детерминированную систему можно считать часп.ым случаем стохастической (при вероятности равной единице^. Аналогично, если принять во внимание диалектику субъективно о и объективного в системе, то станет понятной относительность >азделения системы на абстрактные и объективно существующие: то могут быть стадии развития одной и той же системы. Действительно, естсствсшше и искусственные объект J, < гражаясь в сознании человека, выступают в {юли абстракций, понятий, я абстр ten ые проекты создаваемых систем воплощаются в реально существующие объск ы, чоторие можно ощу-Tim,, а при изучении снова отразтъ в виде абстрактной сис"^ем j. Однако относительность классификаций не должна останавливать исследователей. Цель любой классификации - ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы системного анализа и дать рекомендации по выбору методов для соответствующего класса систем. При этом система, в принципе, может быть одновременно охарактеризована несколькими признаками, т. е. ей может быть найдено место одновременно в разных классификациях, каждая из которых может оказаться полезной при выборе методов моделирования. Рассмотрим для примера некоторые из наиболее важных классификаций систем. Открытые и закрытые системы. Понятие открытой системы ввел Л. фон Берталанфи [1.6]. Основные отличительные черты открытых систем - способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются (разумеется, с точностью до принятой чувствительности модели) полностью лишенными этой способности, т. е. изолированными от среды. Возможны частные случаи: например, не учитываются гравитационные и энергетические процессы, а отражается в модели системы только обмен информацией со средой; тогда говорят об информационно-проницаемых или соответственно об информационно-непроницаемых системах. С моделью открытой системы Берталанфи можно познакомиться в [1.6, 1.7, 1.62]. Там же рассматриваются некоторые интересные особенности открытых систем. Одна из наиболее важных состоит в следующем. В открытых системах "проявляются термодинамические закономерности, которые кажутся парадоксальными и противоречат второму началу термодинамики" ([1.7], с. 42). Напомним, что второй закон термодинамики ("второе начало"), сформулированный для закрытых систем, характеризует систему' ростом энтротга, стремлением к неупорядоченности, разрушению. Проявляется этот закон и в открытых системах (например, старение биологических систем). Однако в отличие от закрытых в от- 46 системах возможен "а вод эттюпии", ее снижение; "по-системы могут сохранять свой высокий уровень и даже раз-<;шаться в сторону увеличения порядка сложности" ([1.7], с. 42), т. е. них проявляется рассматриваемая в следующем разделе законо-мсрность самооргшшзации (хотя Берталанфи этот термин еще не использовал). Именно поэтому важно для системы управления поддерживать хороший обмен информацией со средой. Целенаправленные, целеустремленные с и с- г е м ы. Как уже отмечалось, не всегда при изучении систем можно применять понятие цель. Однако при изучении экономических, ор- анизационных объектов важно выделять класс целенаправленных ;ши целеустремленных систем [13, 4.1]. В этом классе, в свою очередь, можно выделить системы, в которых цели задаются извне (обычно это имеет место в закрытых системах), и системы, в которых цели формируются внутри системы (что характерно для открытых, самоорганизующихся систем). Закономерности целеобразоваяия в самоорганизующихся системах рассматриваются ниже. Методики, помогающие формировать и анализировать структуры целей, характеризуются в гл. 4. Классяфккацшв актам» га» слсжностн. Существует несколько подходов к разделению систем по сложности. Так, Г-Н.Поваров связывает сложность с размерами системы [1.34]. В то же время существует точка зрения, что большие (по величине, количеству элементов) и сложные (по сложности связей, алгоритмов поведения) системы — это разные классы систем [13]. Б.С.Флейшман за основу классификации принимает сложность поведения системы [1.52]. Одна из наиболее полных и интересных классификаций по уровням сложности предложена К.Боулдишом [1ЛО, 1.63]. Выделенные в ней уровни приведены в табл. 1.1. В классификации К.Бсулдинга каждый последующий класс включает в себя предыдущий, характеризуется большим проявлением свойств открытости и стохастичности поведения, более ярко выраженными проявлениями закономерностей иерархичности и историчности (рассматриваемых ниже), хотя это не всегда отмечается, а также более сложными "механизмами" функционирования и развития. Оценивая классификации с точки зрения их использования при выборе методов моделирования систем, следует отметить, что такие рекомендации (вплоть до выбора математических методов) имеются в них только для классов относительно низкой сложности (в классификации К.Боулдинга, например, - для уровня неживых систем), 47 46 Глава 1 Основы системного анализа 47 щих уровней, когда аналоговая модель отображает несколько (или только одну) сторон функционирования объекта. Макетирование применяется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию или могут предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора понятий исследуемой предметной области, причем этот набор должен быть фиксированным. Под тезаурусом понимается словарь, отражающий связи между словами или иными элементами данного языка, предназначенный для поиска слов по их смыслу. Традиционный тезаурус состоит из двух частей: списка слов и устойчивых словосочетаний, сгруппированных по смысловым (тематическим) рубрикам; алфавитного словаря ключевых слов, задающих классы условной эквивалентности, указателя отношений между ключевыми словами, где для каждого слова указаны соответствующие рубрики. Такое построение позволяет определить семантические (смысловые) отношения иерархического (род/вид) и неиерархического (синонимия, антонимия, ассоциации) типа. Формально тезаурусом называют конечное непустое множество V слов v, отвечающее следующим условиям: 1) имеется непустое подмножество У0 с V, называемое мно жеством дескрипторов; 2) имеется симметричное, транзитивное, рефлексивное отно шение R с Fx V, такое, что: б) V] е V \ vq => (3v е V0)(vR Vl) • при этом отношение R называется синонимическим, а слова v,, v2 , отвечающие этому отношению, называются синонимическими дескрипторами; 3) имеется транзитивное и несимметричное отношение К с: vqx.vq, называемое обобщающим отношением. В случае если два дескриптора v( и v2 удовлетворяют отношению v, К v2, то полагают, что дескриптор v, более общий, чем дескриптор v2. Элементы множества У\У0 называются множеством аскрип-торов. Между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус - словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову может соответствовать несколько понятий. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта. Математическое моделирование - это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В принципе, для исследования характеристик любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, т.е. построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения. Для представления математических моделей могут использоваться различные формы записи. Основными являются инвариантная, аналитическая, алгоритмическая и схемная (графическая). Инвариантная форма - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели. В этом случае модель может быть представлена как совокупность входов, выходов, переменных состояния и глобальных уравнений системы в виде (1.3). а для более сложных систем оговаривается, что дать такие рекомендации трудно. Поэтому ниже подробнее рассматривается классификация, в которой делается попытка связать выбор методов моделирования со всеми классами систем Основанием для этой классификации является степень организованности Таблица 1.1
систем по степени организованности к ее роль в выборе методов моделирования систем. Впервые разделение систем по степени организованности по аналогии с классификацией Г.Саймона и А.Ньюэлла (хорошо структризованные, плохо структуризо-ванные и неструктуризованные проблемы [1.37]) было предложено В.В.Налимовым, который выделил класс хорошо организованных я класс плохо организованных или диффузных систем [1.34]. Позднее к этим двум классам был добавлен еще класс самоорганизующихся систем [1.49], который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся, самообучающихся, самонастраивающихся и т.п. систем. Выделенные классы практически можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем. 48 Кратко охарактеризуем эти классы. I. Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в биде детерминированных (аналитических, графических) зависимостей. На представлении этим классом систем основаны большинство моделей физических процессов и технических систем. Однако для сложных объектов формирование таких моделей существенно зависит от лица, принимающего решения. Например, работу сложного механизма приходится отображать в виде упрощен-• •, >й схемы или системы уравнений, учитывающих не все, но наиболее сущсствсшшс очки зрения автора модели и назначения механизма (цели его создания), элементы : связи между ними. Атом может быть представлен в виде планетарной модели, ;о^ггоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы. Строго говоря, простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно детерминированными, поскольку при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а члограммы можно измерить только с некоторой точностью. Иными словами, для отображения сложного объекта в виде хорошо организо-;--..;нной системы приходится выделять существенные и не учитывать относительно >. ^-существенные для конкретной цели рассмотрения компоненты, а при необходп-v.-jcth более детального описания нужно уточнить цель, указав с какой степенью глубины нас интересует исследуемый объект, и построить новую (отображающую его) систему с учетом уточненной цели. Например, при описании атома можно учесть протоны, нейтроны, мезоны и д; гуте микрочастицы, не рассматриваемые в планетарной модели системы. При исследовании сложного радиоэлектронного устройства после предварительного его отображения с помощью обобщенной блок-схемы разрабатывают принципиальную схему, проводят соответствующие расчеты для определения номиналов элементов, входящих в нес и реализующих необходимый режим ее функционирования, и т. д. При представлении объекта в виде хорошо организованной системы задачи выбора целей и определения средств их достижения (элементов, связен) не разделяются. Проблемная ситуация может быть описана в виде выражении, связывающих цель со средства (т. е. в виде критерия функционирования, критерия или показателя эффективности, целевой функции и т. п.), которые могут быть представлены сложным уравнением, формулой, системой уравнений или сложных математических моделей, включающих и уравнения, к неравенства, и т. п. При этом иногда говорят, что цель представляется в виде критерия функционирования или эффективности, в то время как в подобных выражениях объединены и цель, и-средства. Представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т. е. экспериментально доказана адекватность модели реальному объекту или процессу. Попытки применить 49 48 Глава 1 Основы системного анализа 49 Аналитическая форма - запись модели в виде результата решения исходных уравнений модели. Обычно модели в аналитической форме представляют собой явные выражения выходных параметров как функций входов и переменных состояния. Для аналитического моделирования характерно то, что в основном моделируется только функциональный аспект системы. При этом глобальные уравнения системы, описывающие закон (алгоритм) ее функционирования, записываются в виде некоторых аналитических соотношений (алгебраических, интегродиф-ференциальных, конечноразностных и т.д.) или логических условий. Аналитическая модель исследуется несколькими методами: • аналитическим, когда стремятся получить в общем виде явные зависимости, связывающие искомые характеристики с на чальными условиями, параметрами и переменными состояния системы; • численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных началь ных данных (напомним, что такие модели называются цифро выми); • качественным, когда, не имея решения в явном виде, мож но найти некоторые свойства решения (например, оценить устой чивость решения). В настоящее время распространены компьютерные методы исследования характеристик процесса функционирования сложных систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм. Алгоритмическая форма - запись соотношений модели и выбранного численного метода решения в форме алгоритма. Среди алгоритмических моделей важный класс составляют имитационные модели, предназначенные для имитации физических или информационных процессов при различных внешних воздействиях. Собственно имитацию названных процессов называют имитационным моделированием. При имитационном моделировании воспроизводится алгоритм функционирования системы во времени - поведение системы, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и другие, которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования. В имитационном моделировании различают метод статистических испытаний (Монте-Карло) и метод статистического моделирования. Метод Монте-Карло - численный метод, который применяется для моделирования случайных величин и функций, вероятностные характеристики которых совпадают с решениями аналитических задач. Состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и функций, с последующей обработкой информации методами математической статистики. Если этот прием применяется для машинной имитации в целях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования. Метод имитационного моделирования применяется для оценки вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование Ъюжет быть положено в основу структурного, алгоритмического и параметрического синтеза систем, когда требуется создать систему с заданными характеристиками при определенных ограничениях. Комбинированное (аналитика-имитационное) моделирование позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей производится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические моде- 4—20 класс хорошо организованных систем для подставления сложных многокомпонентных объектов или многокритериальных задач, которые приходится решать при разработке технических комплексов, совершенствовании управления предприятиями и организациями и т. д., практически безрезультатны: это не только требует недопустимо больших затрат времени на формирование модели, но часто нереализуемо, так как не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, характеризуемыми далее. 2. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования не всего объекта или класса явлений, а путем изучения определенной с помощью некоторых правил достаточно представительной выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого, выборочного, исследования получают характеристики или закономерности (статистические, зкономиче- , ские и т. п.), и распространяют эти закономерносги на поведение • системы в целом. При этом делаются соответствующие оговорки. Например, прц^ получении статистических закономерностей их распространяют на; поведение системы с какой-то вероятностью, которая оценивает-, * ся с помощью специальных приемов, изучаемых математической * статистикой. ®? •А,* В качестве псимера применения диффузной системы обычно приводят отобра-^ жение газа. При использовании газа для прикладных целей его свойства не опрсде-* ляют путем точного описания поведения каждой молекулы, а характеризуют газ макропараметрами - давлением, относительной проницаемостью, постоянной Больцмана и т. д. Основываясь на этих параметрах, разрабатывают приборы Я устройства, использующие свойства газа, не исследуя прн этом поведения каждой молекулы. S- Отображение объектов б виде диффузных систем находит широт кое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслужи" вающих, например, ремонтных цехах предприятия и в обслужива ющих учреждениях (для решения подобных задач применяют ме^ тоды теории массового обслуживания), при исследовании документ, тальных потоков информации и т. д. *'? 3. Отображение объектов в виде самоорганизующих^ с я систем позволяет исследовать наименее изученные объекты jt, процессы с большой неопределенностью на начальном этапе новки задачи. 50 Класс самоорганизующихся или развивающихся сие см характе--чпуегся рядом признаков, особенностей, приближающих их к ре-L.MibiM развивающимся объектам. >7н особенности, как правило, обусловлены наличием в системе пивных элементов и носят двойственный характер: они являются .)лиымн свойствами, полезными для существования системы, при- ,т„>сабливаемости ее к изменяющимся условиям среды, но в то же ;;г)см«{ вызывают неопределенность, затрудняют управление систе- »^Й. Рассмотрим эти особенности несколько подробнее: нсстационарность (изменчивость, нестабильность) отдельных параметров и сто- : , •>личность поведения: уникальность и непредсказуемость поведения системы в конкретных условиях , шгодаря наличию активных элементов у системы как бы 1фоявляется "свобода •г >ли"), но в то же время наличие предельных возможностей, определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного гнил систем офушурньши связями; сносо6ностг> адаптироваться к изменяющимся условиям среды и помеха.» (причем г, .к к внешним, так и к внутренним), что, казалось бы. является весьма полезным „ . шством. однако адаптивность может проявляться не только но отношению к • v.t-хам. по и по отношению к управляющим воздействиям, что весьма затрудняет ••равление системой; : пособность противостоять энтропийны.** (разрушающим систему) тенденциям, с/ .словленная наличием активных элементов, стимулирующих обмен матернальны--.••% энергетическими и инфомационными продуктами со средой и проявляющих со-чпюнные "инициативы", благодаря чему в таких системах не выполняется законо-.vt-qmocTb возрастания энтропии (аналогична* второму закону термодинамики, дсй-сгиующему в закрытых системах, так. называемому "второму началу") и даже на-Г:.:юдаются нсгэнтропийные тенденции, т.е. собственно самоорганизация, развитие; способность вырабатывать варианты поведения и изменять свою структуру (при ьччюходимости), сохраняя при этом целостносгь и основные свойства; способность и стремлением к целеобразованию: в отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами : •;•: формируются внутри системы (впервые эта особенность прнмсвдпсльно к к ^комическим системам была сформулирована Ю.И.Черняком [13D; неоднозначность использования понятий (например, "цель" - "средство", "система" 'подсистема" и т. п.); эта особенность проявляется прн формировании структур 1 rrrfi, при разработке проектов сложных автоматизированных комплексов, когда .иша, формирующие структуру системы, назвав какую-то ее часть подсистемой, ч^'-ез некоторое время начинают говорить о нек, как о системе, не добавляя гтри-с;влки "под", или подцели начинают называть средствами достижения вышестоящих целей, что часто вызывает затяжные дискуссии, легко разрешимые с помощью свойства "двуликого Януса", рассматриваемого в следующем параграфе. Легко видеть, что часть из этих особенностей характерна для диффузных систем (стохастичность поведения, нестабильность от-Оельных параметров), но большинство из рассмотренных особенно-степ являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование. Перечисленные особенности имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности. 51 50 Основы системного анализа 51 ли, а для остальных подпроцессов строятся имитационные модели. Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использованием аналитического или имитационного моделирования в отдельности. Информационное (кибернетическое) моделирование связано с исследованием моделей, в которых отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию, рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Таким образом, в основе информационных (кибернетических) моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести данную функцию на имитационной модели, причем на совершенно другом математическом языке и, естественно, иной физической реализации процесса. Так, например, экспертные системы являются моделями ЛПР. Структурное моделирование системного анализа базируется на некоторых специфических особенностях структур определенного вида, которые используются как средство исследования систем или служат для разработки на их основе специфических подходов к моделированию с применением других методов формализованного представления систем (теоретико-множественных, лингвистических, кибернетических и т.п.). Развитием структурного моделирования является объектно-ориентированное моделирование. Структурное моделирование системного анализа включает: • методы сетевого моделирования; • сочетание методов структуризации с лингвистическими; • структурный подход в направлении формализации постро ения и исследования структур разного типа (иерархических, мат ричных, произвольных графов) на основе теоретико-множествен ных представлений и понятия номинальной шкалы теории изме рений. При этом термин «структура модели» может применяться как к функциям, так и к элементам системы. Соответствующие структуры называются функциональными и морфологическими. Объектно-ориентированное моделирование объединяет структуры обоих типов в иерархию классов, включающих как элементы, так и функции. В структурном моделировании за последнее десятилетие сформировалась новая технология CASE. Аббревиатура CASE имеет двоякое толкование, соответствующее двум направлениям использования CASE-систем. Первое из них - Computer-Aided Software Engineering - переводится как автоматизированное проектирование программного обеспечения. Соответствующие CASE-системы часто называют инструментальными средами быстрой разработки программного обеспечения (RAD - Rapid Application Development). Второе - Computer-Aided System Engineering - подчеркивает направленность на поддержку концептуального моделирования сложных систем, преимущественно слабоструктурированных. Такие CASE-системы часто называют системами BPR (Business Process Reengineering). В целом CASE- технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных автоматизированных систем, поддерживаемую комплексом взаимосвязанных средств автоматизации. CASE - это инструментарий для системных аналитиков, разработчиков и программистов, позволяющий автоматизировать процесс проектирования и разработки сложных систем, в том числе и программного обеспечения. Ситуационное моделирование опирается на модельную теорию мышления, в рамках которой можно описать основные механизмы регулирования процессов принятия решений. В центре модельной теории мышления лежит представление о формировании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное поведение человека строится путем формирования целевой ситуации и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенными отношениями, отображающими семантику предметной обла- 4* Мм не приводили 1 одробиых поясняющих примеров, поскольку каждый студент можсг легко обнаружить большинство из названных особенностей на при icpe споею свешенного повеления или поведения своих друтсй, коллектива, в котором учшся. * В то же время при создании и организации управления предприятиями часто стремятся отобразить их, используя теорию автоматического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую понимание систем с активными элементами, что способно нанести вред предприятию, сделать его неживым "механизмом", не способным адаптироваться к среде и разрабатывать варианты своего развития. Такая ситуация стала наблюдаться в нашей стране в 60-70-е годы, когда слишком жесткие директивы стали сдерживать развитие промышленности, и в поисках выхода руководство страны начало реформы управления, названные по имени их инициатора косыгин-скими (подробнее см. в гл. 4). Для того, чтобы начать осознавать проявление рассмотренных особенностей в реальных производственных ситуациях, студентам рекомендуется ознакомиться с примерами задач управления в [1.14, 8 и др.]. Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элемента-; ми занимаются философы, психологи, специалисты по теории систем. Основные изученные к настоящему времени закономерности построения, функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующем параграфе.1 Проявление противоречивых особенностей развивающихся систем и объясняющих их закономерностей в реальных объектах необходимо изучать, постоянно контролировать, отражать в моделях-и искать методы и средства, позволяющие регулировать степень их проявления. При этом следует иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня слож--ности, систему легче изготовить и ввести в действие, преобразовать-и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования та-; ких систем это наблюдение подтверждалось и была осознана их ' После ознакомления с закономерностями студентам рекомендуется составить таблицу особенностей и закономерностей, их объясняющих. 52 основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем. Эта особенность, т. е. необходимость сочетания формальных метол">в и методов качественного анализа и положена в ©снову <как < удет показано ниже) большинства моделей и методик системного i нализа. П{ и «'юрмированин таких моделей меняется привычное предста-илени- о моделях, характерное для математического моделирования и при он дной математики. Изменяется представление и о доказа-тельст ?е адекватности таких моделей. Ос но шую конструктивную идею моделирования при отображении оЬъетга классом самоорганизующихся систем можно сформулировать следующим образом: разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем, путем преобразования полученного отображения с помощью установленных (принятых) правил (правил структуризации или декомпозиции; правил композиции, поиска мер близости на пространстве состояний), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения. Таким образом можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонент), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступагь от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта). Адекватность модели также доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей. Иными словами, такое моделирование становится как бы своеобразным "механизмом" развития системы. Практическая реализация такого "механизма" связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка (знаковой системы) может быть положен один^ из методов моделирования систем (например, теоретико-множественные представления, математическая логика, математическая лингвистика, имитационное динамическое моделирование, информационный подход и т. д.), но по мере развития модели методы могут меняться (как в примерах морфологического и структурно-лингвистического моделирования в главах 7, 8). 53 52 Основы системного анализа 53 сти. Модель объекта имеет многоуровневую структуру и представляет собой тот информационный контекст, на фоне которого протекают процессы управления. Чем богаче информационная модель объекта и выше возможности манипулирования ею, тем лучше и многообразнее качество принимаемых решений при управлении. При реальном моделировании используется возможность исследования характеристик либо на реальном объекте целиком, либо на его части. Такие исследования проводятся как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.д.). Реальное моделирование является наиболее адекватным, но его возможности ограничены. Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. Натурное моделирование подразделяется на научный эксперимент, комплексные испытания и производственный эксперимент. Научный эксперимент характеризуется широким использованием средств автоматизации, применением весьма разнообразных средств обработки информации, возможностью вмешательства человека в процесс проведения эксперимента. Одна из разновидностей эксперимента - комплексные испытания, в процессе которых вследствие повторения испытаний объектов в целом (или больших частей системы) выявляются общие закономерности о характеристиках качества, надежности этих объектов. В этом случае моделирование осуществляется путем обработки и обобщения сведений о группе однородных явлений. Наряду со специально организованными испытаниями возможна реализация натурного моделирования путем обобщения опыта, накопленного в ходе производственного процесса, т.е. можно говорить о производственном эксперименте. Здесь на базе теории подобия обрабатывают статистический материал по производственному процессу и получают его обобщенные характеристики. Необходимо помнить про отличие эксперимента от реального протекания процесса. Оно заключается в том, что в эксперименте могут появиться отдельные критические ситуации и определиться границы устойчивости процесса. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процесс функционирования объекта. Другим видом реального моделирования является физическое, отличающееся от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и модельном (псевдореальном) масштабах времени или рассматриваться без учета времени. В последнем случае изучению подлежат так называемые «замороженные» процессы, фиксируемые в некоторый момент времени. 132 ПРИНЦИПЫ И ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ Математическое моделирование многие считают скорее искусством, чем стройной и законченной теорией. Здесь очень велика роль опыта, интуиции и других интеллектуальных качеств человека. Поэтому невозможно написать достаточно формализованную инструкцию, определяющую, как должна строиться модель той или иной системы. Тем не менее отсутствие точных правил не мешает опытным специалистам строить удачные модели. К настоящему времени уже накоплен значительный опыт, дающий основание сформулировать некоторые принципы и подходы к построению моделей. При рассмотрении порознь каждый из них может показаться довольно очевидным. Но совокупность взятых вместе принципов и подходов далеко не тривиальна. Многие ошибки и неудачи в практике моделирования являются прямым следствием нарушения этой методологии. Принципы определяют те общие требования, которым должна удовлетворять правильно построенная модель. Рассмотрим эти принципы. 1. Адекватность. Этот принцип предусматривает соответствие модели целям исследования по уровню сложности и организа- При моделирования наиболее сложных нроцессч>в (например, процессов целеобразования, с >вершенствования организационных структур и т. п.) "механизм" развития (самооргагизации) мохсет быть реализован в форме сскявегстьующей методики системного анализа (примеры которых рассматриваются в гл, вах 4, 5). Рассматриваемый класс систем можно paiC *гь на подклассы, "выделив адаптивные или сямоприспосабливающш и системы, самообучающиеся системы, самовосстанавливающиес . аммоспроизводящиеся и т. п. классы, в которых в различной «. er jhh реализуются рассмотренные выше и еще не изученные (на рь мер, для самовоспроизводящихся систем) особенности. При представлении объекта классом самоорга; изующихся систем задачи определения целей и выбора средств, ка-< правило, разделяются. При этом задачи определения целей, с»ыЬора средств, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т. е. структура основных направления, плана, структура функциональной части АСУ должна развиваться так же (и даже здесь нужно чаще включать "механизм" развития), как и структура обеспечивающей части АСУ, организационная структура предприятия и т. д. Большинство из рассматриваемых в последующих главах примеров методов, моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это будет особо оговариваться. Рассмотренные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам поставлены в соответствие методы формализованного представления систем (см. гл. 2), и таким образом, определив класс системы, можно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить. 1.5. Закономерности систем Закономерности взаимодействия части и целого. В процессе изучения особенностей функционирования и развития сложных систем с активными элементами был выявлен ряд закономерностей, помогающих глубже понять диалектику части и целого в системе и формировать более адекватные модели принятия решений. Рассмотрим основные из этих закономерностей. Целостность. Закономерность целостности (эмер-джентностъ) проявляется в системе в возникновении у нее "новых интегративных качеств, несвойственных ее компонентам "[1.1]. Проявление этой закономерности легко пояснить на примерах поведения популяций, социальных систем и даже технических объ-54 54 Глава 1 Основы системного анализа 55 ции, а также соответствие реальной системе относительно выбранного множества свойств. До тех пор, пока не решен вопрос, правильно ли отображает модель исследуемую систему, ценность модели незначительна. 2. Соответствие модели решаемой задаче. Модель должна строиться для решения определенного класса задач или конкретной задачи исследования системы. Попытки создания универсальной модели, нацеленной на решение большого числа разнообразных задач, приводят к такому усложнению, что она оказывается практически непригодной. Опыт показывает, что при решении каждой конкретной задачи нужно иметь свою модель, отражающую те аспекты системы, которые являются наиболее важными в данной задаче. Этот принцип связан с принципом адекватности. 3. Упрощение при сохранении существенных свойств системы. Модель должна быть в некоторых отношениях проще прототипа - в этом смысл моделирования. Чем сложнее рассматриваемая система, тем по возможности более упрощенным должно быть ее описание, умышленно утрирующее типичные и игнорирующее менее существенные свойства. Этот принцип может быть назван принципом абстрагирования от второстепенных деталей. 4. Соответствие между требуемой точностью результатов моделирования и сложностью модели. Модели по своей природе всегда носят приближенный характер. Возникает вопрос, каким должно быть это приближение. С одной стороны, чтобы отразить все сколько-нибудь существенные свойства, модель необходимо детализировать. С другой стороны, строить модель, приближающуюся по сложности к реальной системе, очевидно, не имеет смысла. Она не должна быть настолько сложной, чтобы нахождение решения оказалось слишком затруднительным. Компромисс между этими двумя требованиями достигается нередко путем проб и ошибок. Практическими рекомендациями по уменьшению сложности моделей являются: • изменение числа переменных, достигаемое либо исключением несущественных переменных, либо их объединением. Процесс преобразования модели в модель с меньшим числом переменных и ограничений называют агрегированием. Например, все типы ЭВМ в модели гетерогенных сетей можно объединить в четыре типа - ПЭВМ, рабочие станции, большие ЭВМ (мейнфрей-мы), кластерные ЭВМ; • изменение природы переменных параметров. Переменные параметры рассматриваются в качестве постоянных, дискретные - в качестве непрерывных и т.д. Так, условия распространения ра диоволн в модели радиоканала для простоты можно принять постоянными; • изменение функциональной зависимости между переменны ми. Нелинейная зависимость заменяется обычно линейной, дис кретная функция распределения вероятностей - непрерывной; • изменение ограничений (добавление, исключение или мо дификация). При снятии ограничений получается оптимистичное решение, при введении - пессимистичное. Варьируя ограничени ями, можно найти возможные граничные значения эффективно сти. Такой прием часто используется для нахождения предвари тельных оценок эффективности решений на этапе постановки задач; • ограничение точности модели. Точность результатов мо дели не может быть выше точности исходных данных. 5. Баланс погрешностей различных видов. В соответствии с принципом баланса необходимо добиваться, например, баланса систематической погрешности моделирования за счет отклоне ния модели от оригинала и погрешности исходных данных, точ ности отдельных элементов модели, систематической погрешно сти моделирования и случайной погрешности при интерпрета ции и осреднении результатов. 6. Многовариантность реализаций элементов модели. Разно образие реализаций одного и того же элемента, отличающихся по точности (а следовательно, и по сложности), обеспечивает ре гулирование соотношения «точность/сложность». 7. Блочное строение. При соблюдении принципа блочного строения облегчается разработка сложных моделей и Появляется возможность использования накопленного опыта и готовых бло ков с минимальными связями между ними. Выделение блоков производится с учетом разделения модели по этапам и режимам функционирования системы. К примеру, при построении модели для системы радиоразведки можно выделить модель работы из лучателей, модель обнаружения излучателей, модель пеленгова ния и т.д. В зависимости от конкретной ситуации возможны следующие подходы к построению моделей: 56 Глава • непосредственный анализ функционирования системы; • проведение ограниченного эксперимента на самой системе; • использование аналога; • анализ исходных данных. Имеется целый ряд систем, которые допускают проведение непосредственных исследований по выявлению существенных параметров и отношений между ними. Затем либо применяются известные математические модели, либо они модифицируются, либо предлагается новая модель. Таким образом, например, можно вести разработку модели для направления связи в условиях мирного времени. При проведении эксперимента выявляются значительная часть существенных параметров и их влияние на эффективность системы. Такую цель преследуют, например, все командно-штабные игры и большинство учений. Если метод построения модели системы не ясен, но ее структура очевидна, то можно воспользоваться сходством с более простой системой, модель для которой существует. К построению модели можно приступить на основе анализа исходных данных, которые уже известны или могут быть получены. Анализ позволяет сформулировать гипотезу о структуре системы, которая затем апробируется. Так появляются первые модели нового образца иностранной техники при наличии предварительных данных об их технических параметрах. Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: стремления к полноте описания и стремления к получению требуемых результатов возможно более простыми средствами. Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности (существует известное правило: начинай с простых моделей, а далее усложняй). Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой анализ позволяет исключать некоторые факторы из рассмотрения. Сложные системы требуют разработки целой иерархии моделей, различающихся уровнем отображаемых операций. Выделяют такие уровни, как вся система, подсистемы, управляющие объекты и др.
Основы системного анализа Рассмотрим один конкретный пример - модель развития экономики (модель Харрода). Эта упрощенная модель развития экономики страны предложена английским экономистом Р. Харро-дом. В модели учитывается один определяемый фактор - капитальные вложения, а состояние экономики оценивается через размер национального дохода. Для математической постановки задачи введем следующие обозначения: • У, - национальный доход в год t; • Kt - производственные фонды в год t; • Ct - объем потребления в год t; • St - объем накопления в год t; • Vt - капитальные вложения в год /. Будем предполагать, что функционирование экономики происходит при выполнении следующих условий: • условие баланса доходов и расходов за каждый год Г,= С, + 5,; • условие исключения пролеживания капитала St = Vt; • условие пропорционального деления национального го дового дохода S,=aYt, Два условия принимаются для характеристики внутренних экономических процессов. Первое условие характеризует связь капитальных вложений и общей суммы производственных фондов, второе - связь национального годового дохода и производственных фондов. Капитальные вложения в год t могут рассматриваться как прирост производственных фондов или производная от функции производственные фонды принимается как капитальные годовые вложения: dt Национальный доход в каждый год принимается как отдача производственных фондов с соответствующим нормативным коэффициентом фондоотдачи: 58 Глава 1 Основы системного анализа 59 Соединяя условия задачи, можно получить следующее соотношение: Y=Z- = — = -— a adt a dt Отсюда следует итоговое уравнение Харрода: Ь^аТ. dt Его решением является экспоненциальное изменение национального дохода по годовым интервалам: V —V oat/b г, - /Ое Несмотря на упрощенный вид математической модели, ее результат может быть использован для укрупненного анализа национальной экономики. Параметры а и Ъ могут стать параметрами управления при выборе плановой стратегии развития в целях максимального приближения к предпочтительной траектории изменения национального дохода или для выбора минимального интервала времени достижения заданного уровня национального дохода. 133 ЭТАПЫ ПОСТРОЕНИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата. Можно выделить следующие основные этапы построения моделей. 1. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и соотношения между ними. Например, фиксируется, что если значение одного параметра возрастает, то значение другого - убывает и т.п. Вопросы, связанные с полнотой и единственностью набора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление ускорить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию. На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели. 2. Формализация операций. Формализация сводится в общих чертах к следующему. На основе содержательного описания определяется исходное множество характеристик системы. Для выделения существенных характеристик необходим хотя бы приближенный анализ каждой из них. При проведении анализа опираются на постановку задачи и понимание природы исследуемой системы. После исключения несущественных характеристик выделяют управляемые и неуправляемые параметры и производят символизацию. Затем определяется система ограничений на значения управляемых параметров. Если ограничения не носят принципиальный характер, то ими пренебрегают. Дальнейшие действия связаны с формированием целевой функции модели. В соответствии с известными положениями выбираются показатели исхода операции и определяется примерный вид функции полезности на исходах. Если функция полезности близка к пороговой (или монотонной), то оценка эффективности решений возможна непосредственно по показателям исхода операции. В этом случае необходимо выбрать способ свертки показателей (способ перехода от множества показателей к одному обобщенному показателю) и произвести саму свертку. По свертке показателей формируются критерий эффективности и целевая функция. 60 Если при качественном анализе вида функции полезности окажется, что ее нельзя считать пороговой (монотонной), прямая оценка эффективности решений через показатели исхода операции неправомочна. Необходимо определять функцию полезности и уже на ее основе вести формирование критерия эффективности и целевой функции. В целом замена содержательного описания формальным - это итеративный процесс. 3. Проверка адекватности модели. Требование адекватности находится в противоречии с требованием простоты, и это нужно учитывать при проверке модели на адекватность. Исходный вариант модели предварительно проверяется по следующим основным аспектам: • Все ли существенные параметры включены в модель? • Нет ли в модели несущественных параметров? • Правильно ли отражены функциональные связи между параметрами? • Правильно ли определены ограничения на значения пара метров? Для проверки рекомендуется привлекать специалистов, которые не принимали участия в разработке модели. Они могут более объективно рассмотреть модель и заметить ее слабые стороны, чем ее разработчики. Такая предварительная проверка модели позволяет выявить грубые ошибки. После этого приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта. Для установления соответствия создаваемой модели оригиналу используются следующие пути: • сравнение результатов моделирования с отдельными экс периментальными результатами, полученными при одинаковых условиях; • использование других близких моделей; • сопоставление структуры и функционирования модели с прототипом. Главным путем проверки адекватности модели исследуемому объекту выступает практика. Однако она требует накопления статистики, которая далеко не всегда бывает достаточной для получения надежных данных. Для многих моделей первые два
Основы системного анализа пути приемлемы в меньшей степени. В этом случае остается один путь: заключение о подобии модели и прототипа делать на основе сопоставления их структур и реализуемых функций. Такие заключения не носят формального характера, поскольку основываются на опыте и интуиции исследователя. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки. 4. Корректировка модели. При корректировке модели могут уточняться существенные параметры, ограничения на значения управляемых параметров, показатели исхода операции, связи показателей исхода операции с существенными параметрами, критерий эффективности. После внесения изменений в модель вновь выполняется оценка адекватности. 5. Оптимизация модели. Сущность оптимизации моделей со стоит в их упрощении при заданном уровне адекватности. Ос новными показателями, по которым возможна оптимизация мо дели, выступают время и затраты средств для проведения иссле дований на ней. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Преобразо вание может выполняться либо с использованием математичес ких методов, либо эвристическим путем. 1.4. ПРИНЦИПЫ И СТРУКТУРА СИСТЕМНОГО АНАЛИЗА Универсальной методики - инструкции по проведению системного анализа - не существует. Такая методика разрабатывается и применяется в тех случаях, когда у исследователя нет достаточных сведений о системе, которые позволили бы формализовать процесс ее исследования, включающий постановку и решение возникшей проблемы. В принципе за основу при разработке методики системного анализа можно взять этапы проведения любого научного исследования или этапы исследования и разработки, принятые в теории автоматического управления. Однако специфической особен- 62 Глава 1 Основы системного анализа 63 ностью любой методики системного анализа является то, что она должна опираться на понятие системы и использовать закономерности построения, функционирования и развития систем. Здесь нужно подчеркнуть, что при практическом применении методик системного анализа рассматривается следующее: часто после выполнения того или иного этапа возникает необходимость возвратиться к предыдущему или еще более раннему этапу, а иногда и повторить процедуру системного анализа полностью. Это проявление закономерности саморегулирования, самоорганизации, которую при разработке методики можно учитывать сознательно, ввести правила, определяющие, в каких случаях необходим возврат к предыдущим этапам. Общим для всех методик системного анализа является определение закона функционирования системы, формирование вариантов структуры системы (нескольких альтернативных алгоритмов, реализующих заданный закон функционирования) и выбор наилучшего варианта, осуществляемого путем решения задач декомпозиции, анализа исследуемой системы и синтеза системы и снимающего проблему практики. Основой построения методики анализа и синтеза систем в конкретных условиях является соблюдение принципов системного анализа. 1.4.1. ПРИНЦИПЫ СИСТЕМНОГО АНАЛИЗА Принципы системного анализа - это некоторые положения общего характера, являющиеся обобщением опыта работы человека со сложными системами. Различные авторы излагают принципы с определенными отличиями, поскольку общепринятых формулировок на настоящее время нет. Однако так или иначе все формулировки описывают одни и те же понятия. Наиболее часто к системным причисляют следующие принципы: принцип конечной цели, принцип измерения, принцип эк-вифинальности, принцип единства, принцип связности, принцип модульного построения, принцип иерархии, принцип функциональности, принцип развития (историчности, открытости), принцип децентрализации, принцип неопределенности. Принцип конечной цели. Это абсолютный приоритет конечной (глобальной) цели. Принцип имеет несколько правил: • для проведения системного анализа необходимо в первую очередь сформулировать цель исследования. Расплывчатые, не полностью определенные цели влекут за собой неверные выводы; • анализ следует вести на базе первоочередного уяснения ос новной цели (функции, основного назначения) исследуемой сис темы, что позволит определить ее основные существенные свой ства, показатели качества и критерии оценки; • при синтезе систем любая попытка изменения или совер шенствования должна оцениваться относительно того, помогает или мешает она достижению конечной цели; • цель функционирования искусственной системы задается, как правило, системой, в которой исследуемая система является составной частью. Принцип измерения. О качестве функционирования какой-либо системы можно судить только применительно к системе более высокого порядка. Другими словами, для определения эффективности функционирования системы надо представить ее как часть более общей и проводить оценку внешних свойств исследуемой системы относительно целей и задач суперсистемы. Принцип эквифиналъности. Система может достигнуть требуемого конечного состояния, не зависящего от времени и определяемого исключительно собственными характеристиками системы при различных начальных условиях и различными путями. Это форма устойчивости по отношению к начальным и граничным условиям. Принцип единства. Это совместное рассмотрение системы как целого и как совокупности частей (элементов). Принцип ориентирован на «взгляд внутрь» системы, на расчленение ее с сохранением целостных представлений о системе. Принцип связности. Рассмотрение любой части совместно с ее окружением подразумевает проведение процедуры выявления связей между элементами системы и выявление связей с внешней средой (учет внешней среды). В соответствии с этим принципом систему в первую очередь следует рассматривать как часть (элемент, подсистему) другой системы, называемой суперсистемой или старшей системой. |
|
© 2007 |
|