РУБРИКИ

Литература - Другое (книга по генетике)

   РЕКЛАМА

Главная

Логика

Логистика

Маркетинг

Масс-медиа и реклама

Математика

Медицина

Международное публичное право

Международное частное право

Международные отношения

История

Искусство

Биология

Медицина

Педагогика

Психология

Авиация и космонавтика

Административное право

Арбитражный процесс

Архитектура

Экологическое право

Экология

Экономика

Экономико-мат. моделирование

Экономическая география

Экономическая теория

Эргономика

Этика

Языковедение

ПОДПИСАТЬСЯ

Рассылка E-mail

ПОИСК

Литература - Другое (книга по генетике)

пользуя при этом методы блот-гибридизации или ПЦР. Экспрес-

сию введенного гена анализируют путем идентификации специфи-

ческих мРНК и/или соответствующих белковых продуктов в раз-

личных тканях трансгенного животного.

Другой, более более прогрессивный способ получения

трансгенных животных основан на том, что трансфекции подвер-

гается не зигота, а тотипотентные эмбриональные стволовые

клетки (см.ниже), которые затем трансплантируют в полость

бластоцисты (Gardner, 1978). Этот метод и его решающие преи-

мущества в плане генетического моделирования подробно

рассмотрены в разделе 8.4.

Как правило, иньецированная ДНК при встраивании в хро-

мосому образует блок из множества тандемно расположенных ко-

пий, при этом число единиц повтора в блоке у разных

особей может варьировать от единицы до нескольких сотен.

После интеграции введенной ДНК в хромосому различные генети-

ческие конструкции устойчивы и стабильно передаются по-

томству в соответствии с законами Менделя. Встраивание вве-

денной ДНК в функционально значимые области генома может

приводить к их дестабилизации и сопровождаться появлением

мутаций, спектр которых очень разнообразен. Таким образом,

животные, полученные при введении одного и того же гена, бу-

дут различаться как по сайтам интеграции, так и по количест-

ву копий встроенной чужеродной ДНК, а в некоторых случаях,

по уровню мутабильности и по типам индуцированных мутаций.

Таким образом, каждое трансгенное животное в этом смысле

уникально.

Трансгенные животные являются черезвычайно удобным обь-

ектом для анализа роли отдельных элементов гена в регуляции

его работы. Так, сопоставление характера экспрессии введен-

ного гена у животных, различающихся по длине фланнкирующих

последовательностей иньецированной ДНК, дает возможность об-

наружить элементы гена, контролирующие его работу в разных

типах тканей. Для облегчения анализа регуляторных последова-

тельностей гена часто вводят генетические конструкции, соче-

тающие эти элементы с геном-репортером, экспрессия которого

выражается в появлении известной и легко определяемой фер-

ментативной активности. Использование для трансгеноза реком-

бинантных молекул ДНК, представляющих собой различные комби-

нации регуляторных элементов и кодирующих последовательнос-

тей, ведет к более глубокому пониманию молекулярных механиз-

мов активации генов в разных типах тканей.

Как уже указывалось, случайный характер интеграции чуже-

родной ДНК нередко индуцирует мутации и нарушает экспрессию

нормальных генов реципиента. В ряде случаев наблюдаемые отк-

лонения в развитии оказываются аналогичными или сходными с

уже известными наследственными нарушениями у человека и по-

добные животные также могут использоваться в качестве гене-

тических моделей заболеваний. Этот подход был применен для

получения моделей таких заболеваний, в патогенезе которых

решающую роль играет эффект дозы генов. В частности, путем

трансфекции зиготы мышей генами бета-глобина, коллагена, ре-

нина, антигенов гистосовместимости удалось получить биологи-

ческие модели таких заболеваний, как бета-талассемия, несо-

вершенный остеогенез, гипертония и диабет, соответственно

(Erickson, 1988). Во всех перечисленных случаях введение до-

полнительной дозы экспрессирующего гена приводило к наруше-

нию балланса белковых генопродуктов в клетках и, как следс-

твие этого, было причиной патологических процессов.

Раздел 8.3. Экспериментальное моделирование.

Другой вариант биологического моделирования основан на

получении животных с определенными очень специфичными, но

ненаследственными изменениями. Эти животные также могут быть

использованы для анализа молекулярных основ патогенеза и

разработки методов адекватного лечения. Рассмотрим несколько

примеров подобного экспериментального моделирования.

Описанная технология трансгеноза (введение генов в про-

нуклеус) может быть использована, в частности, для направ-

ленного получения животных с избирательными дефектами

(уродствами) тех или иных тканей и органов. Метод заключает-

ся в возможности селективной элиминации тех специфических

типов клеток, которые отсутствуют или дефектны у больных с

моделируемым типом заболевания. Такие животные могут быть

получены при иньекции в зародыш рекомбинантной ДНК, содержа-

щей какой-либо цитотоксический ген, например, ген дифтерий-

ного токсина, находящийся под контролем работающих в опреде-

ленных типах клеток регуляторных элементов ДНК. При актива-

ции этих контролирующих элементов на определеной стадии раз-

вития экспрессия токсического гена приводит к избирательной

гибели всей специфической популяции клеток, то есть такая

система действует как очень точный скальпель.

Дальнейшая модификация метода заключается в использова-

нии для трансгеноза условно летального гена, каким является,

например, ген тимидинкиназы вируса Герпеса. Клетки,

экспрессирующие этот ген, функционируют совершенно нормаль-

но. Однако, на любой стадии онтогенетического развития можно

вызвать их селективную гибель при введении животному ганцик-

ловира - противогерпесного препарата. Эта система дает боль-

ше возможностей для экспериментального анализа роли специфи-

ческих клонов клеток в процессе нормального развития, а так-

же для изучения патологичеких процессов, связанных с гибелью

этих клеток. Подобная методология используется также при

разработке генотерапевтических подходов для лечения некото-

рых ненаследственных, в частности онкологических заболева-

ний (см Главу IX).

Весьма многообещающим методом моделирования представля-

ется направленное выключение работы определенных генов путем

введения в доимплантационные зародыши антисмысловых мРНК.

Такой подход был применен, в частности, при попытке модели-

рования болезни Гоше - лизосомного заболевания, обусловлен-

ного дефицитом бета-глюкуронидазы (Bevilacqua et al., 1988).

Естественно, что в этом случае выключение экспрессии гена

носит транзиторный характер, то есть моделью, по-сути, явля-

ется само животное - реципиент антисмысловой мРНК матрицы.

Другой пример экспериментального моделирования основан

на пересадке тканей или клеток атимусным иммунодефицитным

мышам nu/nu. У мышей этой линии в связи с отсутствием тимуса

и выраженным врожденным иммунодефицитом не происходит оттор-

жение трансплантированных чужеродных тканей. Более того, у

таких животных может происходить дифференцировка трансплан-

тированных подкожно эмбриональных зачатков и регенерация пе-

ресаженных кусочков тканей из различных органов других видов

животных и человека. Так например, кусочки трахеи крысы с

нанесенными на них клетками бронхогенного эпителия человека,

имплантированные подкожно атимусным мышам, формируют струк-

туру поверхностного эпителия, сходную с той, которая имеется

в бронхах человека. Именно таким путем мыши nu/nu были ак-

тивно использованы для анализа экспрессии мутантных вариан-

тов гена муковисцидоза человека, а также для испытания эф-

фективности коррекции этого генетического дефекта с помощью

методов генотерапии. В последнем случае мутантные эпители-

альные клетки пациентов с муковисцидозом вначале подвергали

трансфекции ретровирусными или аденовирусными векторами, не-

сущими, наряду с геном - репортером, полноразмерную кДНК

нормального гена муковисцидоза. Относительная простота по-

добных моделей и возможность генетического манипулирования с

клетками человека до их трансплантации атимусным мышам дела-

ют этот подход весьма привлекательным для решения многих

экспериментальных вопросов. Основные недостатки таких моде-

лей связаны с трудностями содержания и разведения атимусных

мышей и их низкой жизнеспособностью. Генетические линии жи-

вотных в этом отношении имеют значительные преимущества.

Раздел 8.4. Конструирование модельных генетических ли-

ний животных.

Современный уровень экспериментальной эмбриологии мле-

копитающих и современные достижения молекулярной генетики

позволяют осуществлять направленное получение генетических

моделей наследственных болезней путем введения сайт-специфи-

ческих модификаций в геном млекопитающих. Такой значительный

качественный прорыв в генетическом моделировании стал возмо-

жен благодаря появлению принципиально новой технологии мани-

пулирования с ранними зародышами млекопитающих. Особенно

важными в этом отношении оказались два новых методических

подхода: получение зародышей-химер, состоящих из клеточных

клонов разных зигот, путем введения тотипотентных клеток в

полость бластоцисты (Gardner, 1978) и разработка технологии

культивирования клеточных векторов, так называемых эмбрио-

нальных стволовых клеток (Evans, Kaufman, 1981). С другой

стороны, появились методы сайт-специфического переноса кло-

нированных последовательностей ДНК в геном эукариот, осно-

ванные на отборе клеточных клонов, в которых после трансфек-

ции происходит инсерция экзогенной ДНК в гомологичном сайте

геномной ДНК без какого-либо нарушения последовательности

ДНК в месте встраивания.

Конструированию генетических моделей должны предшество-

вать идентификация и сравнительный анализ двух гетерологич-

ных генов - гена человека, вследствие нарушения работы кото-

рого развивается моделируемое заболевание, и его гомолога у

выбранного для моделирования животного. При выборе обьекта

моделирования, в первую очередь, руководствуются методичес-

кими возможностями экспериментального манипулирования с жи-

вотными. Важное значение имеет сходство кодирующих областей

гетерологичных генов по нуклеотидным последовательностям. В

большинстве случаев мыши представляются наиболее удобным

обьектом для моделирования. Современный алгоритм формирова-

ния генетической линии животных с мутациями в заданном гене

предполагает: (1) наличие культур тотипотентных, то есть

способных к неограниченному развитию и дифференцировке, эмб-

риональных стволовых клеток; (2) создание на базе рекомби-

нантных ДНК генно-инженерных конструкций для направленного

переноса генов; (3) трансфекцию этих конструкций в культуры

эмбриональных стволовых клеток последующим скринингом и от-

бором клонов со специфическими генетическими модификациями;

(4) введение отобранных модифицированных клеток в зародыш на

стадии бластоцисты по методу Гарднера с целью получения хи-

мерных трансгенных животных; (5) отбор химерных особей, не-

сущих модифицированные гены в различных тканях и органах;

(6) селекцию особей, гетерозиготных по данной мутации; (7)

инбредное разведение и селекцию гомозигот (Рис.8.1).

Как упоминалось ранее, идеальной системой для направ-

ленного переноса мутаций в геном млекопитающих являются эмб-

риональные стволовые клетки - ЭСК (Evans, Kaufman, 1981;

Erickson, 1988; Labosky et al., 1994). Первичные культуры

этих клеток получают из клеток бластоцисты (внутренней кле-

точной массы) или из первичных половых клеток ранних пос-

тимплантационных зародышей. При выращивании на питательном

слое из эмбриональных фибробластов ЭСК сохраняются в недиф-

ференцированном состоянии от трех месяцев до года. При этом

они могут быть несколько раз заморожены и оттаяны без потери

способности к дифференцировке. ЭСК, введенные в бластоцель

(полость бластоцисты), сохраняют свою тотипотентность и мо-

гут участвовать в формировании, практически, всех эмбрио-

нальных зачатков и органов развивающегося зародыша. В ре-

зультате образуется животное - химера, состоящее из клеточ-

ных клонов двух разных типов: клеток исходного родительского

генотипа и ЭСК. Если эти клетки различаются, например, по

генам окраски шерсти, животное - химера будет иметь попереч-

ную или пятнистую окрашенность. При этом все животные, неза-

висимым образом полученные в результате введения в одинако-

вые по генотипу зародыши одной и той же линии клеток, будут

отличаться друг от друга по характеру пятнистости, так как

все химеры различны по набору клеточных клонов, развившихся

и дифференцировавшихся из введенных в зародыш ЭСК. Химерные

животные, у которых ЭСК дифференцировались в половые клетки

и дали начало полноценным зрелым гаметам будут устойчиво пе-

редавать своим потомкам генетическую информацию, содержащую-

ся в ЭСК. Таких животных ингда называют зародышевыми транс-

миттерами. При скрещивании их с мышами дикого типа часть по-

томков будет уже гетерозиготна по мутантным генам ЭСК, то

есть будут нести мутацию в гаплоидном состоянии в каждом ти-

пе клеток. Это в равной степени относится и к мутациям, ис-

кусственно введенным предварительно в ЭСК. Скрещивая таких

гетерозигот, можно получить животных, гомозиготных по задан-

ной мутации. Естественно, последнее достижимо только в том

случае, если мутация не окажется летальной в гомозиготном

состоянии у животных этого вида.

Возможность вести селекцию нужных мутантных или

трансгенных клонов ЭСК и лишь затем их использовать в ка-

честве клеточных векторов нашло широкое применение в генети-

ческом моделировании. Первоначально для этой цели ЭСК обра-

батывали различными мутагенами (этилнитрозомочевиной) отби-

рали клоны клеток, несущих мутацию в нужном гене, и затем

использовали их для создания инъекционных химер по Гарднеру.

Таким способом на мышах была получена модель болезни Леш-Ни-

хана - мутация гена гипоксантин-фосфорибозил-трансферазы

(Hooper et al.,1987). C разработкой технологии адресной

доставки чужеродной ДНК в гены-мишени этот способ генети-

ческого моделирования стал особенно эффективным. Сайт-специ-

фическая модификация генов ЭСК достигается за счет гомоло-

гичной рекомбинации между экзогенной и хромосомной ДНК. При

трансфекции большая часть проникших в ядра молекул рекомби-

нантной ДНК сохраняется там в течение двух-трех дней в виде

кольцевых эписом и в дальнейшем теряется либо происходит ин-

теграция трансфецирующей плазмиды в геном клетки- хозяина

путем негомологичной рекомбинации, то есть в случайные сайты

хромосомной ДНК. В таких клетках экспрессия введенных генов

устойчиво сохраняется. Частота интеграции экзогенной ДНК мо-

жет быть повышена при использовании линейных плазмид и спе-

циальных, преимущественно, ретровирусных векторов экзогенной

ДНК (см. Главу IX). Случаи стабильной интеграции экзогенной

ДНК могут быть легко выявлены, если трансфецирующие плазмиды

или вектора содержат селектируемый маркерный ген. Чаще всего

в качестве маркера используют прокариотический ген neo, со-

общающий клеткам устойчивость к неомицину. Клетки, в которых

произошла интеграции такой плазмиды в хромосомную ДНК, будут

образовывать устойчивые клоны при выращивании на среде G418,

содержащей неомицин, в то время как все другие клоны клеток

будут в этих условиях деградировать.

Раздел 8.5. Методы направленного переноса генов.

Наиболее важным шагом на пути искусственного получения

мутантной линии животных является отбор клонов ЭСК с

сайт-специфической модификацией определенного гена. Однако,

случаи инсерции экзогенной ДНК в ген-мишень очень редки, их

общая частота, обычно, не превышает 10-6. Предпринимаются

попытки генетической модификации ЭСК с тем, чтобы повысить в

них частоту гомологичной рекомбинации. Идентифицированы не-

которые гены, контролирующие этот процесс у мышей и у чело-

века. Однако, в любом случае схемы направленной модификации

генов должны включать селекцию нужных клонов клеток. Впервые

направленная сайт-специфическая модификация была выполнена

также на гене гипоксантин-фосфорибозил-трансферазы (см.выше)

и была получена еще одна генетическая линия мышей, моделиру-

ющая вызванную дефектом в HPRT-гене болезнь Леш-Нихана у че-

ловека (Thomas, Capecci, 1987). Успех этих исследований, в

первую очередь, обусловлен существованием простых схем отбо-

ра клеток с функционирующим и нефункционирующим HPRT-геном

на селективных средах. Важно также, что этот ген локализован

в X-хромосоме и в ХУ-клетках он представлен одной копией.

При этих условиях случаи модификации гена, вызванные инсер-

цией экзогенной ДНК в правильном положении, легко идентифи-

цируются - Рис.8.1 (см. Главу X).

В настоящее время предложено несколько вариантов для

направленного переноса неселектируемых генов за счет допол-

нительной инсерции в трансфецирующую плазмиду селектируемого

маркерного гена в таком положении, при котором его экспрес-

сия происходит преимущественно при правильном встраивании

векторной последовательности в ген-мишень (рис.8.2). Так,

маркерный ген neo, помещенный в инсертируемую область ДНК

плазмиды без собственного промотора, может экспрессироваться

только находясь под контролем какого-либо другого промотора

хромосомной ДНК. Для этого инсерция экзогенной ДНК должна

произойти в область гена-мишени без сдвига рамки считывания.

При случайной интеграции экспрессии маркерного гена не будет

Таким образом, отбор неомицин-устойчивых клеток приведет к

резкому увеличению частоты клонов, в которых произошла гомо-

логичная рекомбинация между зкзогенной и геномной ДНК. На

этом же принципе основано использование генетических конс-

трукций с геном neo, не содержащим поли-А последовательности

в 3' области. Дальнейший поиск гомологичных рекомбинантов

среди G418-устойчивых клеток проводят путем блот-гибридиза-

ции, используя в качестве ДНК-зонда фрагмент векторной пос-

ледовательности, расположенный вне направленно переносимого

участка экзогенной ДНК.

Особенно перспективным на сегоднешний день представля-

ется метод позитивно-негативной селекции (Melton, 1994). Ме-

тод сочетает отбор клеток, в которых произошла интеграция

экзогенной ДНК, с селективной элиминацией тех из них, где

встраивание произошло за счет негомологичной рекомбинации.

Для этого маркерный селектируемый ген neo с регуляторными

последовательностями инсертируют в переносимую область ДНК

плазмиды, а вне этой области встраивают условно летальный

вирусный ген тимидинкиназы герпеса (HSV-tk). При интеграции

такого вектора в геномную ДНК путем гомологичной рекомбина-

ции HSV-tk ген не инкорпорируется в хромосому, тогда как при

негомологичной рекомбинации этот ген будет присутствовать в

неомицин-устойчивых клетках. Обработка таких клеток противо-

герписным агентом - ганцикловиром, будет сопровождаться ги-

белью всех клонов, экспрессирующих вирусную тимидинкиназу

(Рис.8.3).

Отбор клеток с модифицированным геном также может про-

изводиться с помощью ПЦР. При этом не используют какие-либо

маркерные гены и/или селектируемые среды. Олигопраймеры для

амплификации выбирают таким образом, что один из них гомоло-

гичен соседней с сайтом интеграции последовательности моди-

фицируемого гена, а другой соответствует участку инсертируе-

мой экзогенной ДНК (Рис.8.4). Метод позволяет обнаруживать

присутствие пяти правильно модифицированных клеток среди

50 000. После трансфекции клетки разделяются на группы, в

каждой из которых проводят тестирование с помощью ПЦР. При

положительном ответе группу клеток разбивают на подгруппы и

процедуру повторяют до тех пор, пока не удается изолировать

нужные клоны.

Направленное выключение генов-мишеней может быть достиг-

нуто несколькими способами. Так называемые, нулевые мутации

могут быть получены путем встраивания плазмиды, содержащей,

наряду с экзонными последовательностями модифицируемого гена

и селектируемым маркерным геном, сильные транскрипционные и

трансляционные стоп-сигналы. При этом в разрушенном за счет

инсерции экзоне транскрипция прекращается, в результате чего

образуется укороченный белок, незащищенный от действия кле-

точных протеаз.

Более совершенной является разработанная недавно техни-

ка двойной замены гена. Для этого используют ЭСК, дефицитные

по ферменту HPRT - НМ1 (Melton, 1994). На первом этапе

ген-мишень инактивируют путем замены одного из экзонов и

прилежащих последовательностей на HPRT мини-ген. При этом в

нокаутирующем векторе HPRT маркер фланкируется ДНК последо-

вательностями, гомологичными месту вставки в ДНК гена-мише-

ни. В этот же вектор включен и ген вирусной тимидинкиназы

(Рис.8.5). После трансфекции отбираются клетки позитивные по

HPRT и негативные по вирусной тимидин-киназе. Именно в таких

клетках с высокой степенью вероятности произошла гомологич-

ная рекомбинация с заменой одного из экзонов на инсертиро-

ванный мини-ген HPRT. Факт такого встраивания доказывается

при помощи ПЦР. На следующем этапе инсертированный HPRT ми-

ни-ген заменяют на отсутствующий фрагмент гена-мишени, в ко-

торый предварительно вносят интересующие исследователя мута-

ции. При этом альтернативный вектор несет те же фланкирующие

ДНК-последоваельности гена-мишени, что и первый (нокаутирую-

щий) вектор. Клетки HPRT минус на этом, 2- м этапе с большой

вероятностью будут нести гомологичную рекомбинацию встроен-

ной конструкции мини-HPRT гена и альтернативного фрагмента

исходного гена. Факт такой рекомбинации контролируется с по-

мощью ПЦР. Таким образом, вместо обычного выключения функции

гена, что достигается уже на 1-м этапе, данная технология

позволяет вносить в структуру гена дикого типа различные,

заранее спланированные изменения, в том числе и специфичес-

кие мутации, аналогичные таковым при наследственных болезнях

у человека. Следовательно, данный подход позволяет проводить

более тонкое генетическое моделирование и исследовать осо-

бенности функции мутантного гена in vivo.

Для введения специфических мутаций в определенные экзо-

ны гена используют, так называемые "hit & run" векторы (Has-

ty et al., 1991). Перспективным также представляется исполь-

зование дрожжевых YAC-векторов, несущих полноразмерные

кДНК-овые последовательности гена. Так как уровень гомоло-

гичной рекомбинации у дрожжей достаточно высок, в такие

конструкции легко вводить специфические мутации и затем ис-

пользовать их для трансфекции ЭСК и получения трансгенных

животных 4.

Отбор клонов эмбриональных стволовых клеток, в которых

произошла направленная модификация гена-мишени, в значитель-

ной степени, предопределяет успех всего комплекса работ по

созданию модельной генетической линии. Однако, и дальнейшие

этапы этой программы, включающие получение химерных транс-

генных животных, идентификацию зародышевых трансмиттеров

(химер, продуцирующих трансфецированные половые клетки) и

селекцию гетерозиготных, а затем гомозиготных мутантнах осо-

бей, требуют большой квалификации, труда и времени. Осложня-

ющим обстоятельством является то, что химерные животные не-

редко имеют сниженную жизнеспособность и плодовитость. То же

может быть справедливо и в отношении гетерозиготных мутант-

ных особей. В гомозиготном состоянии инсертированные мутации

могут не только снижать жизнеспособность и плодовитость, но

и обладать летальным или полулетальным эффектом уже в прена-

тальном периоде. В таком случае линия поддерживается путем

отбора и скрещивания гетерозигот.

Несмотря на огромные методические сложности и высокую

стоимость, направленное получение моделей наследственных бо-

лезней оправдывает затраченные усилия. Мутантные животные

представляют уникальную возможность исследовать патофизиоло-

гические процессы, развивающиеся в организме вследствие на-

рушений работы определенного гена, анализировать влияние

специфических мутаций на фенотип, тестировать новые лекарс-

твенные препараты и испытывать различные терапевтические

подходы. Велика также роль генетических линий в разработке

методов генной терапии (см. Главу IX).

ГЛАВА IY.

ТИПЫ И НОМЕНКЛАТУРА МУТАЦИЙ. МЕТОДЫ ДНК- ДИАГНОСТИКИ.

Раздел 4.1 Мутантные аллели, характеристика и типы му-

таций.

Каждый генетический локус характеризуется определенным

уровнем изменчивости, то есть присутствием различных аллелей

или вариантов последовательностей ДНК у разных индивидуумов.

Применительно к гену, аллели разделяются на две группы -

нормальные, или аллели дикого типа, при которых функция гена

не нарушена, и мутантные, приводящие к нарушению работы ге-

на. В любых популяциях и для любых генов аллели дикого типа

являются преобладающими. Под мутацией понимают все изменения

в последовательности ДНК, независимо от их локализации и

влияния на жизнеспособность особи. Таким образом, понятие

мутации является более широким по сравнению с понятием му-

тантного аллеля. Уместно, однако, заметить, что в научной

литературе сравнительно часто встречающиеся в популяциях ва-

рианты последовательностей генов, не приводящие к заметным

нарушениям функций, обычно рассматриваются как нейтральные

мутации или полиморфизмы, тогда как понятия "мутация" и "му-

тантный аллель" зачастую употребляются как синонимы.

Как упоминалось ранее, различные изменения в нуклеотид-

ной последовательности транскрибируемых областей ДНК могут

по-разному проявляться в фенотипе. Часть из них не оказывает

никакого влияния на структуру и функцию соответствующего

белка. Примером могут служить замены нуклеотидов, не приво-

дящие к замене аминокислот в силу вырожденности генетическо-

го кода. Мутантные аллели, в свою очередь, могут быть под-

разделены на три класса: (1) мутации, ведущие к полной поте-

ре функции (loss-of-function), (2) мутации, сопровождающиеся

количественными изменениями соответствующих мРНК и первичных

белковых продуктов и (3) доминантно-негативные мутации, из-

меняющие свойства белковых субъединиц таким образом, что они

оказывают повреждающий эффект на жизнеспособность или функ-

ционирование экспрессирующих типов клеток (gain-of-function

мутации). Наибольшим повреждающим действием обладают мута-

ции, приводящие либо к образованию бессмысленного белка, ли-

бо к преждевременному окончанию его синтеза, то есть делеции

или инсерции, не кратные трем нуклеотидам и потому вызываю-

щие сдвиг рамки считывания, а также нонсенс мутации - замены

нуклеотидов, при которых образуются терминирующие стоп-кодо-

ны. Проявление таких мутаций зависит от их внутригенной ло-

кализации. Чем ближе мутации к 5' концу гена, то есть к на-

чалу транскрипции, тем короче их белковые продукты. Такие

абортивные (truncated) белки неспособны к модификациям и

быстро деградируют.

Фенотипическое проявление замен нуклеотидов в кодо-

нах, так нназываемых миссенс мутаций, зависит от природы

соответствующих аминокислотных замен в белке и от функцио-

нальной значимости того домена, в котором это произошло.

Так, замены аминокислот в активных центрах белков могут соп-

ровождаться полной потерей его функциональной активности,

тогда как даже значительно более серьезные нарушения в дру-

гих частях белка часто оказывают существенно меньшее влияние

на фенотип. Мутации на стыке экзонов и интронов (так называ-

емые сплайсинговые мутации) часто нарушают процессинг пер-

вичного РНК-транскрипта, в результате чего происходит либо

неправильное вырезание соответствующей интронной области и

трансляция бессмысленного удлиненного белка, не защищенного

от протеолитического действия внутриклеточных ферментов, ли-

бо вырезание экзонов и образование делетированного белка. В

обоих случаях сплайсинговые мутации, как правило , обуслав-

ливают тяжелое течение болезни. Нарушения в регуляторных об-

ластях генов сопровождаются количественными изменениями

соответствующего продукта и не затрагивают структуры и функ-

циональной активности белка. Проявление таких мутаций опре-

деляется, в конечном счете, пороговым уровнем концентрации

белка, при котором его функция еще сохраняется. Как правило,

регуляторные мутации менее серьезны и обладают более выра-

женным плейотропным (множественым) эффектом по сравнению с

мутациями структурных генов.

Относительно недавно выявлен новый класс так называемых

динамических мутаций, или мутаций экспансии, связанных с

нестабильностью числа тринуклеотидных повторов в функцио-

нально значимых частях генов. Многие тринуклеотидные повто-

ры, локализованные в транскрибируемых или регуляторных об-

ластях генов, характеризуются высоким уровнем популяционной

изменчивости, в пределах которого не наблюдается фенотипи-

ческих нарушений (Willems,1994). Болезнь развивается лишь

тогда, когда число повторов в этих сайтах превосходит опре-

деленный критический уровень. Наследование таких мутаций,

как правило, отличается от классического Менделевского ти-

па. Для них характерны: различная пенетрантность в сочетании

с неполным доминированием; геномный импринтинг (различия фе-

нотипических проявлений в зависимости от того, получена му-

тация от матери или от отца) и феномен антиципации - на-

растание тяжести проявления заболевания в последующих поко-

лениях (Willems,1994).

Классическим примером мутаций экспансии является синд-

ром ломкой Х-хромосомы (FraXA), обусловленный присутствием

удлиненных CCG повторов в 5'-нетранслируемой регуляторной

области FMR1-гена (Xq27.3). Аналогичные нестабильные повторы

обнаружены еще в трех ломких сайтах, причем два из них

(FraXE и FraXF) расположены на очень небольшом расстоянии

дистальнее FraXA. Во всех четырех случаях CCG-повторы лока-

лизованы вблизи от CpG островков, при этом увеличение числа

копий триплетов выше определенного порогового уровня сопро-

вождается гиперметилированием всей регуляторной GC-богатой

области, вследствие чего и происходит резкое снижение и

полное выключение транскрипционной активности - мутации по

типу " утраты функции" (loss-of-functions). Таким образом,

область CCG-повторов в этих локусах можно рассматривать, как

своеобразный cis-действующий элемент транскрипции (Willems,

1994, Mandel,1994).

Другой тип динамических мутаций описан для 6-ти раз-

личных тяжелых аутосомно-доминантных нейродегенеративных

расстройств (см. Главу X). Для всех этих заболеваний обнару-

жено присутствие удлиненных CAG-повторов в открытой рамке

считывания (ORF). Эти повторы транслируются в протяженные

полиглютаминовые треки, предположительно локализованные в

ДНК- связывающих доменах соответствующих белковых продуктов.

В результате белковые молекулы приобретают новые свойства,

нарушающие нормальные метаболические связи. Таким образом,

нестабильные CAG-повторы можно рассматривать, как

gain-of-function - мутации. Интенсивно обсуждается также

возможность участия амплификации CAG-повторов в формировании

предрасположенности к таким частым расстройствам центральной

нервной системы, как шизофрения и маниакально-депрессивный

психоз. Примером третьей группы болезней экспансии служит

миотоническая дистрофия. При этом заболевании огромные CTG

(или CAG) повторы локализованы в 3'-нетранслируемой области

гена. Они также рассматриваются, как факторы, нарушающие

нуклеосомную организацию гена и подавляющие его транскрипцию

Более подробно болезни экспансии рассмотрены в Главе X.

Раздел 4.2. Генетическая гетерогенность наследственных

заболеваний.

Одним из важных обобщающих итогов молекулярно-генети-

ческих исследований моногенных болезней явилось доказа-

тельство их генетической гетерогенности. Последняя может

быть вызвана разными причинами. Прежде всего, оказалось, что

один и тот же биохимический эффект (фенотип) может быть

обусловлен мутациями в разных генах. С другой стороны, мута-

ции одного и того же гена, как установлено, могут приводить

к совершенно разным клиническим проявлениям. Например, мута-

ции гена адренорецептора, сцепленого с Х-хромосомой, могут

быть причиной нейродегенеративного заболевания - болезни

Кеннеди, если они захватывают область тринуклеотидных повто-

ров (Глава X), и в то же время приводить к синдрому тестику-

лярной феминизации, то есть нарушениям половой дифференци-

ровки, если они затрагивают другие последовательности этого

же гена. Крайним выражением такой гетерогенности может слу-

жить пример с геном рецептора тирозинкиназы -RET, различные

мутации которого могут приводить к 4-м совершенно различным

наследственным синдромам, таким как семейная медуллярная

карцинома щитовидной железы, болезнь Гиршпрунга, множествен-

ная эндокринная неоплазия тип 2А (МЭН-2А) и тип 2B (МЭН-2B)

(Hayningen,1994). Подобные фенотипические разнообразия про-

явлений мутаций одного и того же гена получили название ал-

лельных серий. Термин используется уже около 20 лет для

описания групп из нескольких моногенных наследственных забо-

леваний, клинические проявления которых позволяют предпола-

гать их связь с разными генами, в то время как биохимические

и/или генетические исследования доказывают их аллельную при-

роду, то есть в основе их патогенеза лежат разные мутации

одного и того же гена.

В настоящее время известно более 100 таких болезней

(Romeo, McKusick, 1994). Для каждого заболевания из подобной

серии аллелизм мутаций уже доказан на молекулярном уровне.

Причины подобного фенотипического разнообразия могут быть

различными: (1) локализация мутантных аллелей в функциональ-

но разных доменах белка; (2) принципиально разный механизм

действия мутаций (loss-of-function, gain-of-function); (3)

присутствие в том же гене модифицирующего мутантного аллеля

или полиморфизма и (4) влияние генетического окружения на

проявление мутантного аллеля, то есть его взаимодействие с

определенными аллелями гена-модификатора или даже нескольки-

ми такими генами. Углубленный молекулярно-генетический ана-

лиз практически каждого наследственного заболевания указыва-

ет на его значительную генетическую гетерогенность, связан-

ную с различными мутациями гена. Некоторые примеры аллельных

серий и генетической гетерогенности заболеваний будут

рассмотрены более подробно в Главе X.

Раздел 4.3 Номенклатура мутаций.

Для практических целей и, главным образом, для чтения

научной литературы, важно знать, как записываются мутации.

До недавнего времени единой номенклатуры записи мутаций не

существовало. В 1992 г. двумя американскими учеными Артуром

Боде и Лап-Чи Тсуи была предложена универсальная стандартная

система для обозначения разных мутаций (Beudet, Lap-Сhee

Tsui, 1993). Она рассчитана как на запись аминокислотных за-

мен в белках, так и на нуклеотидные замены и перестановки в

ДНК. В первом случае, каждой аминокислоте соответствует од-

нобуквенный символ (Табл.4.1), слева записывается нормальный

вариант аминокислоты, справа - мутантный, а расположенный в

центре номер соответствует месту замены в цепочке первичного

продукта трансляции. Например, запись D44G означает замену

аспарагина на глицин в 44-м положении полипептидной цепи, а

A655E - аланина на глутамин в пложении 655 белкового продук-

та. Так записываются различные варианты аминокислотных замен

при миссенс мутациях. Буквой Х обозначается место остановки

синтеза полипептидной цепи при нонсенс мутациях. Например,

Q39X означает замену глицина на стоп сигнал в 39-м кодоне, а

W1282X - триптофан-триплета на стоп-кодон в положении 1282.

Отсутвие одной или нескольких аминокислот обозначают значком

^-дельта. Так, наиболее частая мутация, приводящая к муко-

висцидозу- ^F508 - означает отсутствие фенилаланина в 508

положении трансмембранного регуляторного белка муковисцидо-

за. Полиморфизмы, связанные с равноценной по функциональной

значимости заменой аминокислот, записывают через черточку.

Например, M/V470 - метионин или валин в положении 470.

Таблица 4.1. Символы аминокмслот.

------------------------T-----------------T--------------¬

¦ Аминокислоты 1¦ 0 Трехбуквенный 1¦ 0

Однобуквенный 1¦

¦ 1¦ 0 символ 1¦ 0 символ 1

¦

+-----------------------+-----------------+--------------+

¦ Аланин 1¦ 0 Ala 1¦ 0 A 1

¦

¦ Аргинин 1¦ 0 Arg 1¦ 0 R 1

¦

¦ Аспарагин 1¦ 0 Asn 1¦ 0 N 1

¦

¦ Аспарагиновая кислота 1¦ 0 Asp 1¦ 0 D 1

¦

¦ Asn и/или Asp 1¦ 0 Asx 1¦ 0 B 1

¦

¦ Цистеин 1¦ 0 Cys 1¦ 0 C 1

¦

¦ Глутамин 1¦ 0 Gln 1¦ 0 Q 1

¦

¦ Глутаминовая кислота 1¦ 0 Glu 1¦ 0 E 1

¦

¦ Gln и/или Glu 1¦ 0 Glx 1¦ 0 Z 1

¦

¦ Глицин 1¦ 0 Gly 1¦ 0 G 1

¦

¦ Гистидин 1¦ 0 His 1¦ 0 H 1

¦

¦ Изолейцин 1¦ 0 Ile 1¦ 0 I 1

¦

¦ Лейцин 1¦ 0 Leu 1¦ 0 L 1

¦

¦ Лизин 1¦ 0 Lys 1¦ 0 K 1

¦

¦ Метионин 1¦ 0 Met 1¦ 0 M 1

¦

¦ Фенилаланин 1¦ 0 Phe 1¦ 0 F 1

¦

¦ Пролин 1¦ 0 Pro 1¦ 0 P 1

¦

¦ Серин 1¦ 0 Ser 1¦ 0 S 1

¦

¦ Треонин 1¦ 0 Thr 1¦ 0 T 1

¦

¦ Триптофан 1¦ 0 Trp 1¦ 0 W 1

¦

¦ Тирозин 1¦ 0 Tyr 1¦ 0 Y 1

¦

¦ Валин 1¦ 0 Val 1¦ 0 V 1

¦

L-----------------------+-----------------+---------------

Принципиальная схема записи и нумерации нуклеотидов

приведена на Рис.4.1. Отсчет нуклеотидов в молекуле ДНК на-

чинается с первого смыслового кодона, так что нуклеотид под

номером +1 соответствует первому нуклеотиду в молекуле кДНК.

Вверх по течению (или справа налево от 3' к 5'-концу) от

первого кодона нуклеотиды записывают со знаком "-", вниз по

течению (от 5 'к 3') - со знаком "+". Для многих генов

отсутствие точных данных о положении инициирующего сайта и

наличие нескольких мест инициации транскрипции существенно

затрудняют нумерацию нуклеотидов. Нуклеотиды экзонов обозна-

чают заглавными буквами, интронов - прописными.

В Табл.4.2. даны примеры обозначения различных мутаций

с использованием как аминокислотной, так и нуклеотидной ну-

мерации. Нуклеотидная система записи особенно важна для

обозначения делеций, инсерций, сплайсинговых мутаций и поли-

морфизмов, не связанных с заменами аминокислот или происхо-

дящими в нетранслируемых частях гена. В случае делеции или

инсерции одного или двух нуклеотидов приводится их буквенное

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15


© 2007
Использовании материалов
запрещено.